Adsorption of tetracycline from aqueous solution by ZIF-8: Isotherms, kinetics and thermodynamics
In this study, ZIF-8 nanoparticles were synthesized using a simple method at room temperature. The ZIF-8 nanoparticles were then characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), BET (Brunauer-Emmett-Teller) specific surface area, X-ray diffraction (XRD), F...
Gespeichert in:
Veröffentlicht in: | Environmental research 2024-01, Vol.241, p.117588-117588, Article 117588 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, ZIF-8 nanoparticles were synthesized using a simple method at room temperature. The ZIF-8 nanoparticles were then characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), BET (Brunauer-Emmett-Teller) specific surface area, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and zeta potential. Subsequent batch adsorption experiments evaluated the adsorption performance of ZIF-8 on tetracycline, examining key pa-rameters like reaction time, pH, temperature, and adsorbent dosage. The results revealed a removal rate for TC of up to 90.59%. The adsorption data aligned with the Sips model, showcasing a maximum adsorption capacity of 359.61 mg/g at 303K. Further, the adsorption kinetics adhered to the pseudo-second-order kinetic model with an equilibrium adsorption capacity of 90 mg/g at 303K. The considerable specific surface area of ZIF-8, standing at 1674.169 m2/g, likely enhances the adsorption efficacy. Analysis using XRD and FTIR confirmed the adsorption of TC on the ma-terial's surface. Overall, the predominant driving forces behind the adsorption process were identified as electrostatic interactions and π-π stacking interactions.
•A straightforward room temperature method was developed for synthesizing ZIF-8 nanoparticles.•ZIF-8 exhibited a remarkable tetracycline removal efficiency.•An impressive specific surface area of ZIF-8 was observed.•Adsorption processes were majorly driven by electrostatic and π-π stacking interactions. |
---|---|
ISSN: | 0013-9351 1096-0953 |
DOI: | 10.1016/j.envres.2023.117588 |