Structure-activity relationship of low molecular weight Astragalus membranaceus polysaccharides produced by Bacteroides
Astragalus membranaceus polysaccharides (APS) possess significant biological activities, such as anti-tumor, antiviral, and immunomodulatory activities. However, there is still a lack of research on the structure-activity relationship of APS. In this paper, two carbohydrate-active enzymes from Bacte...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2023-09, Vol.316, p.121036-121036, Article 121036 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Astragalus membranaceus polysaccharides (APS) possess significant biological activities, such as anti-tumor, antiviral, and immunomodulatory activities. However, there is still a lack of research on the structure-activity relationship of APS. In this paper, two carbohydrate-active enzymes from Bacteroides in living organisms were used to prepare degradation products. The degradation products were divided into APS-A1, APS-G1, APS-G2, and APS-G3 according to molecular weight. Structural analysis showed that all degradation products had an α-1,4-linked glucose backbone, but APS-A1 and APS-G3 also had branched chains of α-1,6-linked galactose or arabinogalacto-oligosaccharide. In vitro, immunomodulatory activity evaluation results indicated that APS-A1 and APS-G3 had better immunomodulatory activity, while the immunomodulatory activities of APS-G1 and APS-G2 were comparatively weaker. Molecular interaction detection showed that APS-A1 and APS-G3 could bind to toll-like receptors-4 (TLR-4) with a binding constant of 4.6 × 10−5 and 9.4 × 10−6, respectively, while APS-G1 and APS-G2 failed to bind to TLR-4. Therefore, the branched chains of galactose or arabinogalacto-oligosaccharide played a crucial role in the immunomodulatory activity of APS.
[Display omitted] |
---|---|
ISSN: | 0144-8617 1879-1344 |
DOI: | 10.1016/j.carbpol.2023.121036 |