Fabrication of robust superhydrophobic microcapsule-based composite coating with self-healing and anti-scaling properties

Superhydrophobic coatings with attractive antifouling, anti-icing, and antiadhesion properties have considerable application potential. However, their instability hinders their large-scale application. In this study, a robust superhydrophobic microcapsule (MC)-based composite fluoroethylene vinyl et...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2023-08, Vol.671, p.131655, Article 131655
Hauptverfasser: Zhang, Congyuan, Liu, Zhanjian, Zhang, Xiguang, Wang, Chijia, Li, Meiling, Yuan, Ruixia, Wang, Huaiyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Superhydrophobic coatings with attractive antifouling, anti-icing, and antiadhesion properties have considerable application potential. However, their instability hinders their large-scale application. In this study, a robust superhydrophobic microcapsule (MC)-based composite fluoroethylene vinyl ether/fluorinated ethylene propylene/carbon nanotubes (CNTs)/microcapsule (MC) coating was fabricated by emulsion polymerization and one-step spraying. Owing to the responsive release of hydroxyl-fluoro silicone oil (HFSO) from MCs and self-lubricating effect of CNTs, the superhydrophobicity of the as-prepared coating was retained after 1000 cycles of abrasion and 7 d of a strong acid/alkali immersion. Moreover, the MC-based superhydrophobic coating exhibited an excellent anti-scaling property under water-flowing conditions, which can be attributed to the cooperative effect of the air film trapped in the uniform micro/nanostructures and the stable lubricant layer formed by the released HFSO. The impact resistance of the MC-based coating was excellent, and its superhydrophobicity was retained even under sand impacting (1100 g), water jetting (338 kPa), and slurry contamination (100 cycles). This study provides a simple and effective approach for fabricating a robust superhydrophpobic coating with self-healing and anti-scaling properties. Further, it paves the way for developing superhydrophobic coatings that can be used in under harsh environments, such as in oil–gas gathering and transferring pipelines. [Display omitted]
ISSN:0927-7757
1873-4359
DOI:10.1016/j.colsurfa.2023.131655