Swine fertility in a changing climate
Climate change has been linked to increasing temperatures and weather extremes. Certain regions around the world become more susceptible to environmental hazards that limit pig production and reproductive fertility. Environmental measures that link to pig fertility are needed to assess change, risk...
Gespeichert in:
Veröffentlicht in: | Animal reproduction science 2024-10, Vol.269, p.107537, Article 107537 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Climate change has been linked to increasing temperatures and weather extremes. Certain regions around the world become more susceptible to environmental hazards that limit pig production and reproductive fertility. Environmental measures that link to pig fertility are needed to assess change, risk and develop solutions. Sub-populations of pigs display lower fertility in summer and are susceptible to heat stress. In the context of a warming climate, elevated temperatures and number of heat stress days increase body temperature and change the physiology, behavior, feed intake, and stress response of the pig. These changes could alter follicle development, oocyte quality, estrus expression, conception and litter size. In boars, sperm quality and production are reduced in response to summer heat stress. Nevertheless, while temperature increases have occurred over the years in some warmer locations, other regions have not shown those changes. Perhaps this involves the measures used for heat stress assessment or that climate is buffered in more temperate areas. Reductions in pig fertility are not always evident, and depend upon climate, year, genotype and management. This could also involve selection, as females more susceptible to heat stress and fertility failure, are subsequently culled. In the years from 1999 to 2020 when increases in global temperature from baseline occurred, measures of female fertility improved for farrowing rate and litter size. Progressive reduction in fertility may not be apparent in all geo-locations, but as temperatures increases become more widespread, these changes are likely to become more obvious and detectable.
•Changes in sperm production as well as parity 1 farrowing rate and litter size are most evident in the summer and fall months.•Progressive decline in farrowing rate by year could be shown in the Central USA and correlates with temperature and year.•Progressive increases in heat stress temperatures over recent years were not evident, or were inconsistent.•Measures of for pig fertility have improved over years but still decline in association with certain months of the year. |
---|---|
ISSN: | 0378-4320 1873-2232 1873-2232 |
DOI: | 10.1016/j.anireprosci.2024.107537 |