A dataset of color fundus images for the detection and classification of eye diseases
The retina is a critical component of the eye responsible for capturing visual information, making the importance of retinal health for clear vision. Various eye diseases, such as age-related macular degeneration, diabetic retinopathy, and glaucoma, can severely impair vision and even lead to blindn...
Gespeichert in:
Veröffentlicht in: | Data in brief 2024-12, Vol.57, p.110979, Article 110979 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 110979 |
container_title | Data in brief |
container_volume | 57 |
creator | Sharmin, Shayla Rashid, Mohammad Riadur Khatun, Tania Hasan, Md Zahid Uddin, Mohammad Shorif Marzia |
description | The retina is a critical component of the eye responsible for capturing visual information, making the importance of retinal health for clear vision. Various eye diseases, such as age-related macular degeneration, diabetic retinopathy, and glaucoma, can severely impair vision and even lead to blindness if not detected and treated early. Therefore, automated systems using machine learning and computer vision techniques have shown promise in the early detection and management of these diseases, reducing the risk of vision loss. In this context, to facilitate the development and evaluation of machine learning models for eye disease detection, we introduced a comprehensive dataset which was collected during a span of eight months from Anawara Hamida Eye Hospital & B.N.S.B. Zahurul Haque Eye Hospital using Color Fundus Photography machine. The dataset has two categories of data: color fundus photographs and anterior segment images. The color fundus photographs categorized into nine classes: Diabetic Retinopathy, Glaucoma, Macular Scar, Optic Disc Edema, Central Serous Chorioretinopathy (CSCR), Retinal Detachment, Retinitis Pigmentosa, Myopia, Healthy and anterior segment images has one class: Pterygium. This dataset comprises 5335 primary images. By providing a rich and diverse collection of color fundus photographs, this dataset serves as a valuable resource for researchers and clinicians in the field of ophthalmology for the automatic detection of nine different classes of eye diseases. |
doi_str_mv | 10.1016/j.dib.2024.110979 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153807139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352340924009417</els_id><sourcerecordid>3123808246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-8e3af8828fa943b6cea30cdcdaeee1bdf1ea380a3c5a64f714a2f292ae4848a33</originalsourceid><addsrcrecordid>eNqNkDtPwzAUhS0EolXpD2BBHlkS_EqbiKmqeEmVWOhs3djX4CpNSpwg9d_jkoKYEJOtc79zho-QS85SzvjsZpNaX6aCCZVyzop5cULGQmYikYoVp7_-IzINYcMY45mKYXZORrJQRTyLMVkvqIUOAna0cdQ0VdNS19e2D9Rv4RUDdTHp3pBa7NB0vqkp1JaaCkLwzhv4imIX95HxAeNWuCBnDqqA0-M7Iev7u5flY7J6fnhaLlaJkZx3SY4SXJ6L3EGhZDkzCJIZaywgIi-t4zHIGUiTwUy5OVcgnCgEoMpVDlJOyPWwu2ub9x5Dp7c-GKwqqLHpg5Y8i_05l8U_UBHRXKhZRPmAmrYJoUWnd22U0e41Z_rgXm90dK8P7vXgPnaujvN9uUX70_g2HYHbAcDo48Njq4PxWBu0vo1etW38H_OfTXaUFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123808246</pqid></control><display><type>article</type><title>A dataset of color fundus images for the detection and classification of eye diseases</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sharmin, Shayla ; Rashid, Mohammad Riadur ; Khatun, Tania ; Hasan, Md Zahid ; Uddin, Mohammad Shorif ; Marzia</creator><creatorcontrib>Sharmin, Shayla ; Rashid, Mohammad Riadur ; Khatun, Tania ; Hasan, Md Zahid ; Uddin, Mohammad Shorif ; Marzia</creatorcontrib><description>The retina is a critical component of the eye responsible for capturing visual information, making the importance of retinal health for clear vision. Various eye diseases, such as age-related macular degeneration, diabetic retinopathy, and glaucoma, can severely impair vision and even lead to blindness if not detected and treated early. Therefore, automated systems using machine learning and computer vision techniques have shown promise in the early detection and management of these diseases, reducing the risk of vision loss. In this context, to facilitate the development and evaluation of machine learning models for eye disease detection, we introduced a comprehensive dataset which was collected during a span of eight months from Anawara Hamida Eye Hospital & B.N.S.B. Zahurul Haque Eye Hospital using Color Fundus Photography machine. The dataset has two categories of data: color fundus photographs and anterior segment images. The color fundus photographs categorized into nine classes: Diabetic Retinopathy, Glaucoma, Macular Scar, Optic Disc Edema, Central Serous Chorioretinopathy (CSCR), Retinal Detachment, Retinitis Pigmentosa, Myopia, Healthy and anterior segment images has one class: Pterygium. This dataset comprises 5335 primary images. By providing a rich and diverse collection of color fundus photographs, this dataset serves as a valuable resource for researchers and clinicians in the field of ophthalmology for the automatic detection of nine different classes of eye diseases.</description><identifier>ISSN: 2352-3409</identifier><identifier>EISSN: 2352-3409</identifier><identifier>DOI: 10.1016/j.dib.2024.110979</identifier><identifier>PMID: 39493522</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>automatic detection ; blindness ; color ; Computer vision ; data collection ; Deep learning ; diabetic retinopathy ; disease detection ; edema ; Eye disease recognition ; glaucoma ; Health analytics ; hospitals ; Image processing ; Machine learning ; macular degeneration ; myopia ; ophthalmology ; photography ; retina ; retinitis pigmentosa ; risk ; vision</subject><ispartof>Data in brief, 2024-12, Vol.57, p.110979, Article 110979</ispartof><rights>2024 The Author(s)</rights><rights>2024 The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-8e3af8828fa943b6cea30cdcdaeee1bdf1ea380a3c5a64f714a2f292ae4848a33</cites><orcidid>0009-0004-9483-9153 ; 0000-0002-2247-988X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39493522$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharmin, Shayla</creatorcontrib><creatorcontrib>Rashid, Mohammad Riadur</creatorcontrib><creatorcontrib>Khatun, Tania</creatorcontrib><creatorcontrib>Hasan, Md Zahid</creatorcontrib><creatorcontrib>Uddin, Mohammad Shorif</creatorcontrib><creatorcontrib>Marzia</creatorcontrib><title>A dataset of color fundus images for the detection and classification of eye diseases</title><title>Data in brief</title><addtitle>Data Brief</addtitle><description>The retina is a critical component of the eye responsible for capturing visual information, making the importance of retinal health for clear vision. Various eye diseases, such as age-related macular degeneration, diabetic retinopathy, and glaucoma, can severely impair vision and even lead to blindness if not detected and treated early. Therefore, automated systems using machine learning and computer vision techniques have shown promise in the early detection and management of these diseases, reducing the risk of vision loss. In this context, to facilitate the development and evaluation of machine learning models for eye disease detection, we introduced a comprehensive dataset which was collected during a span of eight months from Anawara Hamida Eye Hospital & B.N.S.B. Zahurul Haque Eye Hospital using Color Fundus Photography machine. The dataset has two categories of data: color fundus photographs and anterior segment images. The color fundus photographs categorized into nine classes: Diabetic Retinopathy, Glaucoma, Macular Scar, Optic Disc Edema, Central Serous Chorioretinopathy (CSCR), Retinal Detachment, Retinitis Pigmentosa, Myopia, Healthy and anterior segment images has one class: Pterygium. This dataset comprises 5335 primary images. By providing a rich and diverse collection of color fundus photographs, this dataset serves as a valuable resource for researchers and clinicians in the field of ophthalmology for the automatic detection of nine different classes of eye diseases.</description><subject>automatic detection</subject><subject>blindness</subject><subject>color</subject><subject>Computer vision</subject><subject>data collection</subject><subject>Deep learning</subject><subject>diabetic retinopathy</subject><subject>disease detection</subject><subject>edema</subject><subject>Eye disease recognition</subject><subject>glaucoma</subject><subject>Health analytics</subject><subject>hospitals</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>macular degeneration</subject><subject>myopia</subject><subject>ophthalmology</subject><subject>photography</subject><subject>retina</subject><subject>retinitis pigmentosa</subject><subject>risk</subject><subject>vision</subject><issn>2352-3409</issn><issn>2352-3409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkDtPwzAUhS0EolXpD2BBHlkS_EqbiKmqeEmVWOhs3djX4CpNSpwg9d_jkoKYEJOtc79zho-QS85SzvjsZpNaX6aCCZVyzop5cULGQmYikYoVp7_-IzINYcMY45mKYXZORrJQRTyLMVkvqIUOAna0cdQ0VdNS19e2D9Rv4RUDdTHp3pBa7NB0vqkp1JaaCkLwzhv4imIX95HxAeNWuCBnDqqA0-M7Iev7u5flY7J6fnhaLlaJkZx3SY4SXJ6L3EGhZDkzCJIZaywgIi-t4zHIGUiTwUy5OVcgnCgEoMpVDlJOyPWwu2ub9x5Dp7c-GKwqqLHpg5Y8i_05l8U_UBHRXKhZRPmAmrYJoUWnd22U0e41Z_rgXm90dK8P7vXgPnaujvN9uUX70_g2HYHbAcDo48Njq4PxWBu0vo1etW38H_OfTXaUFw</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Sharmin, Shayla</creator><creator>Rashid, Mohammad Riadur</creator><creator>Khatun, Tania</creator><creator>Hasan, Md Zahid</creator><creator>Uddin, Mohammad Shorif</creator><creator>Marzia</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0009-0004-9483-9153</orcidid><orcidid>https://orcid.org/0000-0002-2247-988X</orcidid></search><sort><creationdate>20241201</creationdate><title>A dataset of color fundus images for the detection and classification of eye diseases</title><author>Sharmin, Shayla ; Rashid, Mohammad Riadur ; Khatun, Tania ; Hasan, Md Zahid ; Uddin, Mohammad Shorif ; Marzia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-8e3af8828fa943b6cea30cdcdaeee1bdf1ea380a3c5a64f714a2f292ae4848a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>automatic detection</topic><topic>blindness</topic><topic>color</topic><topic>Computer vision</topic><topic>data collection</topic><topic>Deep learning</topic><topic>diabetic retinopathy</topic><topic>disease detection</topic><topic>edema</topic><topic>Eye disease recognition</topic><topic>glaucoma</topic><topic>Health analytics</topic><topic>hospitals</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>macular degeneration</topic><topic>myopia</topic><topic>ophthalmology</topic><topic>photography</topic><topic>retina</topic><topic>retinitis pigmentosa</topic><topic>risk</topic><topic>vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharmin, Shayla</creatorcontrib><creatorcontrib>Rashid, Mohammad Riadur</creatorcontrib><creatorcontrib>Khatun, Tania</creatorcontrib><creatorcontrib>Hasan, Md Zahid</creatorcontrib><creatorcontrib>Uddin, Mohammad Shorif</creatorcontrib><creatorcontrib>Marzia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Data in brief</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharmin, Shayla</au><au>Rashid, Mohammad Riadur</au><au>Khatun, Tania</au><au>Hasan, Md Zahid</au><au>Uddin, Mohammad Shorif</au><au>Marzia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dataset of color fundus images for the detection and classification of eye diseases</atitle><jtitle>Data in brief</jtitle><addtitle>Data Brief</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>57</volume><spage>110979</spage><pages>110979-</pages><artnum>110979</artnum><issn>2352-3409</issn><eissn>2352-3409</eissn><abstract>The retina is a critical component of the eye responsible for capturing visual information, making the importance of retinal health for clear vision. Various eye diseases, such as age-related macular degeneration, diabetic retinopathy, and glaucoma, can severely impair vision and even lead to blindness if not detected and treated early. Therefore, automated systems using machine learning and computer vision techniques have shown promise in the early detection and management of these diseases, reducing the risk of vision loss. In this context, to facilitate the development and evaluation of machine learning models for eye disease detection, we introduced a comprehensive dataset which was collected during a span of eight months from Anawara Hamida Eye Hospital & B.N.S.B. Zahurul Haque Eye Hospital using Color Fundus Photography machine. The dataset has two categories of data: color fundus photographs and anterior segment images. The color fundus photographs categorized into nine classes: Diabetic Retinopathy, Glaucoma, Macular Scar, Optic Disc Edema, Central Serous Chorioretinopathy (CSCR), Retinal Detachment, Retinitis Pigmentosa, Myopia, Healthy and anterior segment images has one class: Pterygium. This dataset comprises 5335 primary images. By providing a rich and diverse collection of color fundus photographs, this dataset serves as a valuable resource for researchers and clinicians in the field of ophthalmology for the automatic detection of nine different classes of eye diseases.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>39493522</pmid><doi>10.1016/j.dib.2024.110979</doi><orcidid>https://orcid.org/0009-0004-9483-9153</orcidid><orcidid>https://orcid.org/0000-0002-2247-988X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2352-3409 |
ispartof | Data in brief, 2024-12, Vol.57, p.110979, Article 110979 |
issn | 2352-3409 2352-3409 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153807139 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | automatic detection blindness color Computer vision data collection Deep learning diabetic retinopathy disease detection edema Eye disease recognition glaucoma Health analytics hospitals Image processing Machine learning macular degeneration myopia ophthalmology photography retina retinitis pigmentosa risk vision |
title | A dataset of color fundus images for the detection and classification of eye diseases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T01%3A11%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dataset%20of%20color%20fundus%20images%20for%20the%20detection%20and%20classification%20of%20eye%20diseases&rft.jtitle=Data%20in%20brief&rft.au=Sharmin,%20Shayla&rft.date=2024-12-01&rft.volume=57&rft.spage=110979&rft.pages=110979-&rft.artnum=110979&rft.issn=2352-3409&rft.eissn=2352-3409&rft_id=info:doi/10.1016/j.dib.2024.110979&rft_dat=%3Cproquest_cross%3E3123808246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123808246&rft_id=info:pmid/39493522&rft_els_id=S2352340924009417&rfr_iscdi=true |