A dataset of color fundus images for the detection and classification of eye diseases

The retina is a critical component of the eye responsible for capturing visual information, making the importance of retinal health for clear vision. Various eye diseases, such as age-related macular degeneration, diabetic retinopathy, and glaucoma, can severely impair vision and even lead to blindn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Data in brief 2024-12, Vol.57, p.110979, Article 110979
Hauptverfasser: Sharmin, Shayla, Rashid, Mohammad Riadur, Khatun, Tania, Hasan, Md Zahid, Uddin, Mohammad Shorif, Marzia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The retina is a critical component of the eye responsible for capturing visual information, making the importance of retinal health for clear vision. Various eye diseases, such as age-related macular degeneration, diabetic retinopathy, and glaucoma, can severely impair vision and even lead to blindness if not detected and treated early. Therefore, automated systems using machine learning and computer vision techniques have shown promise in the early detection and management of these diseases, reducing the risk of vision loss. In this context, to facilitate the development and evaluation of machine learning models for eye disease detection, we introduced a comprehensive dataset which was collected during a span of eight months from Anawara Hamida Eye Hospital & B.N.S.B. Zahurul Haque Eye Hospital using Color Fundus Photography machine. The dataset has two categories of data: color fundus photographs and anterior segment images. The color fundus photographs categorized into nine classes: Diabetic Retinopathy, Glaucoma, Macular Scar, Optic Disc Edema, Central Serous Chorioretinopathy (CSCR), Retinal Detachment, Retinitis Pigmentosa, Myopia, Healthy and anterior segment images has one class: Pterygium. This dataset comprises 5335 primary images. By providing a rich and diverse collection of color fundus photographs, this dataset serves as a valuable resource for researchers and clinicians in the field of ophthalmology for the automatic detection of nine different classes of eye diseases.
ISSN:2352-3409
2352-3409
DOI:10.1016/j.dib.2024.110979