A method for determining optimal electric range by considering electric vehicle lightweighting on perceived ownership cost

The limited driving range due to high costs and low energy densities of batteries constraints the battery electric vehicle (BEV) market growth. Lightweighting in theory can reduce energy consumption rate and extend the driving range. The knowledge gap is to quantitatively link the cost-effectiveness...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cleaner production 2023-01, Vol.385, p.135606, Article 135606
Hauptverfasser: Ou, Shiqi, Zhang, Shengyong, Lin, Zhenhong, Davis, Stacy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The limited driving range due to high costs and low energy densities of batteries constraints the battery electric vehicle (BEV) market growth. Lightweighting in theory can reduce energy consumption rate and extend the driving range. The knowledge gap is to quantitatively link the cost-effectiveness of light-weight technologies with range extension and consumer acceptance of BEVs. In this study, a physics-based energy consumption model of BEVs is constructed and associated with a statistics-based model on the basis of travel surveys. A perceived cost of ownership (PCO) is then developed by adding intangible costs to traditional total cost of ownership models. We estimate, at the disaggregate vehicle model and driver level and the aggregate market level, 1) the extended range due to lightweighting for a given battery size; and 2) the optimal electric range based on lightweighting decisions. The cost-effectiveness of lightweighting for BEV range extension is found to vary with income-dependent daily range limitation value, driving patterns and lightweighting technology costs. In general, adopting lightweighting in BEVs is more cost-effective for consumers with higher daily limitation value, as well as for those with higher driving intensity or suitable daily driving patterns. When the lightweighting involves a higher vehicle production cost, less lightweighting could reduce the overall PCO for BEV owners. 4 of the selected top ten BEV models are found to benefit from additional 2.09%–4.45% lightweighting. The method built in this study can guide automakers in planning R&D investments in battery and lightweighting technologies. •This work links the physics-based powertrain model with BEV range extension model.•Lightweight cost-effectiveness for BEV range extension varies with drive intensity.•Lightweight is more cost-effective for drivers with higher range limitation value.•4 of the US top 10 BEV models can benefit from further 2.09%–4.45% lightweighting.•The method can guide automakers in battery size design and lightweight integration.
ISSN:0959-6526
1879-1786
DOI:10.1016/j.jclepro.2022.135606