Tuning of Folding Height in Bilayer-Folded Lamellae by Bending Rigidity Control
We investigated the bilayer-folded lamellar (L f) mesophase appearing in the aqueous solution of amphiphilic random copolymers. A series of copolymers were synthesized by reversible addition–fragmentation chain transfer copolymerization of oligo(ethylene glycol) acrylate with alkyl acrylate with di...
Gespeichert in:
Veröffentlicht in: | Macromolecules 2024-09, Vol.57 (17), p.8320-8328 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigated the bilayer-folded lamellar (L f) mesophase appearing in the aqueous solution of amphiphilic random copolymers. A series of copolymers were synthesized by reversible addition–fragmentation chain transfer copolymerization of oligo(ethylene glycol) acrylate with alkyl acrylate with different alkyl chain lengths from octyl (C8) to octadecyl (C18). The alkyl acrylate composition was adjusted between 50–60 mol %. In the concentrated solution with the carbon number of the alkyl side chain higher than 10, the copolymers associated in water via hydrophobic interaction between the alkyl chains to produce micellar bilayers, which were periodically folded into bilayer-folded lamellae. The appearance of a small-angle X-ray scattering (SAXS) peak at a low scattering vector corresponding to >10 nm length scale clearly distinguished the bilayer-folded lamellae from the micellar lamellae with the domain spacing of 5–7 nm. Two-dimensional (2D) SAXS corroborated the presence of bilayer-folded lamellae developing perpendicularly to the micellar lamellae, which is consistent with our previous report. While the L f phase was observed at room temperature for dodecyl (C12) and tetradecyl (C14) side chains that formed amorphous packing, crystalline hexadecyl (C16) and octadecyl (C18) chains seem to disturb bilayer folding. Heating the solution above the melting temperature of the alkyl chains produced the L f phase with the largest folding height in the case of C16. The scaling relationship of the folding height to the carbon number supports the idea that the bending rigidity of the bilayer influences the length scale of folding. |
---|---|
ISSN: | 0024-9297 1520-5835 1520-5835 |
DOI: | 10.1021/acs.macromol.4c00298 |