Scalable, Waterproof, Breathable, and Flexible Polyolefin-Elastomer/Polyethylene Glycol@Zinc Oxide Microfibrous Fabrics for Daytime Radiative Cooling Clothing

In the face of escalating global temperatures, the demand for innovative passive cooling technologies that are both low-cost and environmentally sustainable is more critical than ever. However, traditional cooling fabrics face challenges in achieving wearing comfort while maintaining breathability a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-09, Vol.16 (35), p.46798-46809
Hauptverfasser: Zhao, Ke, Zhang, Heng, Zhai, Qian, Guan, XiaoYu, Zhen, Qi, Cui, JingQiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the face of escalating global temperatures, the demand for innovative passive cooling technologies that are both low-cost and environmentally sustainable is more critical than ever. However, traditional cooling fabrics face challenges in achieving wearing comfort while maintaining breathability and durability. Herein, a novel fluffy microfibrous fabric utilizing polyolefin-elastomer and polypropylene with embedded zinc oxide nanoparticles is fabricated through melt-blown technology. The results reveal that the prepared samples demonstrate exceptional daytime radiative cooling properties that present a 12.5 °C cooling capacity under 1083 W/m2 solar radiation, highlighted by their ability to reflect up to 90.8% of solar radiation and their significantly enhanced thermal emissivity. Moreover, key findings include that the samples have robust mechanical strength, high elastic performance, and excellent antifouling capabilities, alongside superior cooling performance, which will provide an opportunity to explore the development of cooling garments for outdoor environments and contribute substantially to sustainable cooling solutions.
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.4c10570