Stability of the Dentin-Bonded Interface Using Self-Etching Adhesive Containing Diacrylamide after Bacterial Challenge

Purpose/Aim: Acrylamides are hydrolytically stable at pH lower than 2, and were shown to preserve bonded interface integrity with two-step, total etch adhesives. The objective of this study was to leverage those two characteristics in self-etching primers containing the acidic monomer 10-MDP and tes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-09, Vol.16 (35), p.46005-46015
Hauptverfasser: Tsuzuki, Fernanda M., Logan, Matthew G., Lewis, Steven H., Correr-Sobrinho, Lourenço, Pfeifer, Carmem S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose/Aim: Acrylamides are hydrolytically stable at pH lower than 2, and were shown to preserve bonded interface integrity with two-step, total etch adhesives. The objective of this study was to leverage those two characteristics in self-etching primers containing the acidic monomer 10-MDP and test the microtensile bond strength before and after incubation with S. mutans incubation. Materials and Methods: Acidic primers (10 wt % 10-methacryloyloxydecyl dihydrogen phosphate10-MDP; 45 wt % N,N-diethyl-1,3-bis­(acrylamido)­propaneDEBAAP, or 2-hydroxyethyl methacrylateHEMA; 45 wt %, glycerol–dimethacrylateGDMA) and adhesives (DEBAAP or HEMA/10-MDP/UDMA 45/10/45 wt %) were made polymerizable by the addition of 0.2 wt % camphorquinone, 0.8 wt % ethyl-4-dimethylaminobenzoate, 0.4 wt % diphenyliodonium hexafluorophosphate, and 0.1 wt % butylhydroxytoluene. Nonsolvated materials were characterized for flexural strength (FS), modulus (E), toughness, water sorption/solubility (WS/SL), contact angle, and vinyl conversion (DC). Viscosity was evaluated after adding 20 and 40 vol % ethanol to the primer and adhesive, respectively. The experimental materials or Clearfil SE Bond (CCcommercial control) were used to bond a commercial composite (Filtek Supreme) to the flat surface of human dentin. Microtensile bond strength (MTBS) was tested in 1 mm2 sticks for the 5 primer/bond combinations: CC (Clearfil Bond Primer and Bond), HH (HEMA/HEMA), DD (DEBAAP/DEBAAP), HD (HEMA/DEBAAP), and DH (DEBAAP/HEMA). Prior to testing, sticks were stored in water or biofilm-inducing culture medium with S. mutans for 1 week. Confocal images and FTIR–ATR evaluation evaluated the hybrid layer of the adhesives. Results were analyzed using Student’s t-test (WS, SL, DC, contact angle, FS, E, toughness), one-way ANOVA/Tukey’s test for viscosity, and two-way ANOVA/Tukey’s test for MTBS (95%). Results: HEMA-based materials had lower contact angle (p = 0.004), higher WS (p < 0.001), and similar SL values compared to DEBAAP (p = 0.126). FS (p = 0.171) and E (p = 0.065) dry values were similar, but after one week of water storage, FS/E dropped more significantly for HEMA materials. Dry and wet toughness was greater for DEBAAP (p < 0.001), but it also had the greatest drop (46%). Clearfil bonds had the highest viscosity, followed by DEBAAP and HEMA, respectively (p = 0.002). For the primers, HEMA had the lowest viscosity (p = 0.003). As far as MTBS, all groups tested in water were statistically di
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.4c07960