Development of a universal antibiotic resistance screening system for efficient enrichment of C-to-G and A-to-G base editing
To expand the scope of genomic editing, a C-to-G transversion-based editor called CGBE has been developed for precise single-nucleotide genomic editing. However, limited editing efficiency and product purity have hindered the development and application of CGBE. In this study, we introduced the Puro...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-05, Vol.268 (Pt 2), p.131785-131785, Article 131785 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To expand the scope of genomic editing, a C-to-G transversion-based editor called CGBE has been developed for precise single-nucleotide genomic editing. However, limited editing efficiency and product purity have hindered the development and application of CGBE. In this study, we introduced the Puromycin-Resistance Screening System, referred to as CGBE/ABE-PRSS, to select genetically modified cells via the CGBE or ABE editors. The CGBE/ABE-PRSS system significantly improves the enrichment efficiency of CGBE- or ABE-modified cells, showing enhancements of up to 59.6 % compared with the controls. Our findings indicate that the CGBE/ABE-PRSS, when driven by the CMV promoter, results in a higher enrichment of edited cells compared to the CAG and EF1α promoters. Furthermore, we demonstrate that this system is compatible with different versions of both CGBE and ABE, enabling various cell species and simultaneous multiplexed genome editing without any detectable random off-targets. In conclusion, our developed CGBE/ABE-PRSS system facilitates the selection of edited cells and holds promise in both basic engineering and gene therapy applications. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.131785 |