Overcoming slow removal efficiency-induced highly toxic I-DBPs in water by oxygen vacancies enriched invasive plant biochar catalyst: Experimental and theoretical studies

Developing effective and safe catalysts operated in the in-depth removal of iodinated X-ray contrast media is important for overcoming slow removal efficiency-induced highly toxic iodine-replaced disinfection byproducts (I-DBPs). In this study, a novel oxygen vacancies enriched heterogeneous biochar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2023-10, Vol.459, p.132086-132086, Article 132086
Hauptverfasser: Fan, Yu-Han, Lu, Yu-Wei, Hayat, Faisal, Mei, Yu-Han, Chen, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing effective and safe catalysts operated in the in-depth removal of iodinated X-ray contrast media is important for overcoming slow removal efficiency-induced highly toxic iodine-replaced disinfection byproducts (I-DBPs). In this study, a novel oxygen vacancies enriched heterogeneous biochar catalyst (Mo-Co-ECM) from the invasive plant was synthesized by a facile one-step hydrothermal carbonization method and used for the in-depth removal of iohexol (IOH) by the activation of peroxymonosulfate (PMS). The results indicated that after adding PMS for 3 min, the removal efficiency of IOH in Mo-Co-ECM/PMS system reached 100% and exhibited a superior degradation efficiency compared to Co-ECM/PMS and ECM/PMS system. Only nine I-DBPs were found during the degradation, which were dominated by small molecules compounds (MW
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2023.132086