The influence of environment on invasive Carpobrotus sp. populations across genetic clusters

The study aims to explore the natural variation in the metabolome of different populations of the invasive plant Carpobrotus from different genetic clusters and geographical origins to enhance our comprehension of its involvement in the adaptation process and phenotypic diversity. The metabolomic pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry 2024-10, Vol.215, p.109066, Article 109066
Hauptverfasser: González-Orenga, Sara, López-González, David, Araniti, Fabrizio, González, Luis, Sánchez-Moreiras, Adela Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The study aims to explore the natural variation in the metabolome of different populations of the invasive plant Carpobrotus from different genetic clusters and geographical origins to enhance our comprehension of its involvement in the adaptation process and phenotypic diversity. The metabolomic profile of shoots was analysed in four populations from two different genetic clusters (Cluster A: Cádiz and A Lanzada; Cluster B: La Marina and Samil) and two different biogeographical regions in Spain (Atlantic: Samil and A Lanzada; Mediterranean: Cádiz and La Marina), collected in the field and subsequently grown in the greenhouse. In addition, climatic, and physiological parameters were analysed. The Mediterranean populations (Cádiz and La Marina) showed lower initial weight and length measurements in morphological parameters than the Atlantic populations. On the contrary, only root parameters showed significant differences in growth parameters among populations. The analysis of ion levels revealed a consistent pattern of higher concentrations in shoots compared to roots, with significant differences among populations, particularly in sodium (Na+) and chlorides (Cl−) levels. Regarding metabolomic analysis, clear correlations between the metabolome, genetic and climatic conditions of Carpobrotus sp.pl populations are described. Pairwise comparisons using t-tests and Principal Component Analysis (PCA) indicated that the differences in metabolomic profile between the Samil and La Marina populations, which correspond to the same genetic cluster (cluster B), were smaller than in the rest of the comparisons indicating that populations from the same genetic cluster were more similar metabolically than those from the same climatic region. The study identified key metabolites representative of each cluster, with significant differences in amino acids, organic acids, and sugars contributing to the variation among populations. Pathway analysis highlighted the impact of climatic conditions on metabolic pathways, particularly in populations from Cluster A. In conclusion, the different populations were more similar according to the genetic cluster than to the climatic region of origin when studied at the metabolomic level. Consequently, the metabolites more representative of each cluster were also identified. [Display omitted] •Metabolomic differences were evident between the four populations of Carpobrotus.•Populations were more similar according to the genetic cluster tha
ISSN:0981-9428
1873-2690
1873-2690
DOI:10.1016/j.plaphy.2024.109066