Study on activation of fluorogypsum by sodium sulfate and sodium nitrite

Given the issues related to poor hydration activity, long setting time and low early strength of industrial by-product fluorogypsum (FG), the composite modifiers (Na2SO4 and NaNO2) were utilized to enhance its reactivity. The investigation of the mechanism involved the utilization of contemporary an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-05, Vol.925, p.171794-171794, Article 171794
Hauptverfasser: Zhu, Jianping, Wang, Zuolin, Guan, Xuemao, Shah, Surendra P., Liu, Haixia, Yang, Huachun, Zhang, Wenyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given the issues related to poor hydration activity, long setting time and low early strength of industrial by-product fluorogypsum (FG), the composite modifiers (Na2SO4 and NaNO2) were utilized to enhance its reactivity. The investigation of the mechanism involved the utilization of contemporary analytical methods, including X-ray diffraction (XRD), 1H low-field nuclear magnetic resonance (NMR), and Scanning electron microscope and Energy Dispersive Spectrometer (SEM-EDS). The results demonstrated that the incorporation of modifiers significantly enhanced both the hydration rate and activity of fluorogypsum. The optimum concentration of the composite modifier was found to be 1.5 wt% Na2SO4 and 0.5 wt% NaNO2. The addition of modifiers (1.5 wt% Na2SO4 and 0.5 wt% NaNO2) significantly shortens the setting time of FG paste, reducing it by approximately 500 min compared to the control sample. After 28 days of curing, the flexural strength and compressive strength of the fluorogypsum sample containing modifiers (1.5 wt% Na2SO4 and 0.5 wt% NaNO2) increased by 55.5 % (reaching 4.2 MPa) and 31.5 % (reaching 37.6 MPa), respectively. The modifiers facilitate the transformation from anhydrite (CaSO4, AH) to dihydrate gypsum (CaSO4·2H2O, DH). Both NaNO2 and Na2SO4 alter the growth rates of different crystal axes during DH crystal growth, transforming them into prismatic and needle-shaped DH. The prismatic and needle-shaped DH crystals were arranged in layers, resulting in a compact structure with low hole content and few pores, which led to increased density of the hardened paste and higher strength. The current study provides evidence that the inclusion of composite modifiers greatly improves the activity of FG, making it more efficient in the field of building materials. [Display omitted] •A method for activating hydration activity of industrial by-product fluorogypsum was designed.•The modified fluorogypsum has excellent working performance.•The modified fluorogypsum reduces CO2 emissions and energy consumption.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2024.171794