Simultaneously Flame Retarding and Toughening of Epoxy Resin Composites Based on Two-Dimensional Polyhedral Oligomeric Silsesquioxane/Polyoxometalate Supramolecular Nanocrystals with Ultralow Loading

For industrial practical applications, it is difficult to simultaneously endow epoxy resin (EP) composites with superior flame retardancy, smoke suppression, toughness, and low-dielectric constants. Herein, unique polyhedral oligomeric silsesquioxane/polyoxometalate (POM­(Mo)-POSS­(ibu-Li)) nanoshee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-09, Vol.16 (37), p.49763-49777
Hauptverfasser: Ye, Xinming, Jing, Xinyi, Liu, Yunlan, Han, Zhiqing, Yang, Fan, Qiao, Liang, Ren, Jie, Meng, Linggong, Li, Zhimao, Wang, Wensheng, Li, Jie, Li, Yingchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For industrial practical applications, it is difficult to simultaneously endow epoxy resin (EP) composites with superior flame retardancy, smoke suppression, toughness, and low-dielectric constants. Herein, unique polyhedral oligomeric silsesquioxane/polyoxometalate (POM­(Mo)-POSS­(ibu-Li)) nanosheets were synthesized via a simple one-pot method using laboratory-made lithium-containing hepta-isobutyl-POSS (ibu-Li-POSS) and the low-cost industrial chromogenic agent H3PMo12O40 as raw materials. The incorporation of 2 wt % POM­(Mo)-POSS­(ibu-Li) nanoflakes into EP significantly enhanced the compatibility between nanoadditives and the EP matrix. Compared with EP, the flexural and impact strengths increased by 36.2 and 78.2%, respectively. Therefore, POM­(Mo)-POSS­(ibu-Li) has significant advantages in enhancing the toughness of EP compared with existing flame retardants. The dielectric constant and loss were apparently reduced to meet the increasing requirements of EP-type electronic packaging materials and components. Notably, the synthesized POM­(Mo)-POSS­(ibu-Li) contained various flame-retardant and smoke-suppression elements such as P, Mo, and Si. The ultralow loading (2 wt %) of POM­(Mo)-POSS­(ibu-Li) significantly reduced the peak heat release rate, peak of smoke production rate, and CO production rate by 43.9, 40.6, and 65.8%, respectively. Meanwhile, the value of LOI increased directly from 24.0% for EP to 30.2% and passed the V-0 rating in the UL-94 test. However, incorporating 5 wt % POSS derivatives into EP alone to ensure that the prepared composites pass the V-0 rating of the UL-94 test has always been an extraordinarily difficult problem. Therefore, the dilemmas of poor dielectric properties, inherent flammability, and brittleness of EP were completely overcome through the successful application of POM­(Mo)-POSS­(ibu-Li) supramolecular nanosheets.
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.4c09639