Multi-Stage Burst Localization Based on Spatio-Temporal Information Analysis for District Metered Areas in Water Distribution Networks

Burst events in Water Distribution Networks (WDNs) pose a significant threat to the safety of water supply, leading people to focus on efficient methods for burst localization and prompt repair. This paper proposes a multi-stage burst localization method, which includes preliminary region determinat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2024-08, Vol.16 (16), p.2322
Hauptverfasser: Zhang, Xiangqiu, Fang, Yongjun, Zhou, Xinhong, Shao, Yu, Yu, Tingchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Burst events in Water Distribution Networks (WDNs) pose a significant threat to the safety of water supply, leading people to focus on efficient methods for burst localization and prompt repair. This paper proposes a multi-stage burst localization method, which includes preliminary region determination and precise localization analysis. Based on the hydraulic model and spatio-temporal information, the effective sensor sequences and monitoring areas of the nodes are determined. In the first stage, the preliminary burst region is determined based on the monitoring region of sensors and the alarm sensors. In the second stage, localization metrics are used to analyze the dissimilarity degree between burst data from the hydraulic model and the monitoring data from the effective sensors at each node. This analysis helps identify candidate burst nodes and determine their localization priorities. The localization model is tested on the C-Town network to obtain comparative results. The method effectively reduces the burst region, minimizes the search region, and significantly improves the efficiency of burst localization. For precise localization, it accurately localizes the burst event by prioritizing the possibilities of the burst location.
ISSN:2073-4441
2073-4441
DOI:10.3390/w16162322