Efficacy of outer membrane permeabilization in promoting aromatic isothiocyanates-mediated eradication of multidrug resistant Gram-negative bacteria and bacterial persisters

Multidrug resistant (MDR) bacteria are recognized to be one of the most important problems in public health. The outer membrane permeability is a critical intrinsic mechanism of bacterial resistance. In addition, bacteria produce a small number of dormant persister cells causing multidrug tolerance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Folia microbiologica 2024-10, Vol.69 (5), p.993-1002
Hauptverfasser: Lo, Chung-Cheng, Yeh, Tzu-Hui, Jao, Ya-Hsuan, Wang, Tzu-Hui, Lo, Horng-Ren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multidrug resistant (MDR) bacteria are recognized to be one of the most important problems in public health. The outer membrane permeability is a critical intrinsic mechanism of bacterial resistance. In addition, bacteria produce a small number of dormant persister cells causing multidrug tolerance that reduces antimicrobial efficacy. This study aimed to evaluate the inhibitory effects of the combination of aromatic isothiocyanates (ITCs) with membrane-active agents on bacterial persisters and MDR Gram-negative bacteria. Our study demonstrated that membrane-active agents, particularly ethylenediaminetetraacetic acid (EDTA) synergistically enhanced the inhibitory activity of aromatic benzyl ITC and phenethyl ITC against most Gram-negative bacteria strains with fractional inhibitory concentration index values ranging from 0.18 to 0.5 and 0.16 to 0.5, respectively, and contributed to an 8- to 64-fold minimal inhibitory concentration reduction compared with those of aromatic ITCs alone. The EDTA-aromatic ITCs combination effectively reduced the survival rates of tested bacteria and significantly eradicated bacterial persisters ( p  = 0.033 and 0.037, respectively). The growth kinetics analysis also supported the enhanced inhibitory effect of EDTA-aromatic ITCs combination against tested bacteria. Our results suggested an alternate treatment strategy against Gram-negative bacteria, promoting the entry of aromatic ITCs into bacterial cytoplasm to facilitate bacterial clearance and thus preventing the development of bacterial resistance.
ISSN:0015-5632
1874-9356
1874-9356
DOI:10.1007/s12223-024-01143-6