Source-specific ecological risk analysis and critical source identification of heavy metal(loid)s in the soil of typical abandoned coal mining area

Long-term coal mining activities in abandoned coal mining areas have resulted in the migration of large quantities of heavy metals into the surrounding soil environment, posing a threat to the regional ecological environment. This study focuses on the surface soil collected from a typical abandoned...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-10, Vol.947, p.174506, Article 174506
Hauptverfasser: Zhao, Jiyang, Cao, Chengying, Chen, Xing, Zhang, Wanyu, Ma, Tianqi, Irfan, Muhammad, Zheng, Liugen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Long-term coal mining activities in abandoned coal mining areas have resulted in the migration of large quantities of heavy metals into the surrounding soil environment, posing a threat to the regional ecological environment. This study focuses on the surface soil collected from a typical abandoned coal mining area. Methods such as the pollution index (PI) and potential ecological risk index (RI) were used to comprehensively evaluate the pollution levels and ecological risks of soil heavy metals. Geostatistical analysis and the APCS-MLR model were used to quantify the sources of soil heavy metals, and Nemerow integrated ecological risk (NIRI) model was coupled to apportion the ecological risks from different pollution sources. The results indicate that the average concentrations of Cd, As, and Zn are 4.58, 2.44, and 1.67 times the soil background values, respectively, while the concentrations of other heavy metals are below the soil background values. The soil of study area is strongly polluted by heavy metals, with the pollution level and ecological risk of Cd being significantly higher than those of other heavy metals. The NIRI calculation results show that the overall comprehensive ecological risk level is considerable, with sample points classified as relatively considerable, moderate, and low at 60.53 %, 36.84 %, and 2.63 %, respectively. The sources of soil heavy metals can be categorized into four types: traffic activities, natural sources, coal gangue accumulation, and a combined source of coal mining and agricultural activities, with contribution rates of 35.3 %, 36.1 %, 19.5 %, and 9.1 %, respectively. The specific source ecological risk assessment results indicate that coal gangue accumulation contributes the most to ecological risk (36.4 %) and should be prioritized for pollution control, with Cd being the priority control element for ecological risk. The findings provide theoretical support for the refined management of soil heavy metal pollution in abandoned coal mining areas. [Display omitted] •The ecological risks from different sources were quantitatively calculated.•Cd induces the highest ecological risks and is the priority pollutant for control.•Natural sources contribute the most to heavy metal content, but contribute less to ecological risks.•Coal gangue accumulation source contribute the most to ecological risks.
ISSN:0048-9697
1879-1026
1879-1026
DOI:10.1016/j.scitotenv.2024.174506