Environmental impact assessment of the electrokinetic adsorption barriers to remove different herbicides from agricultural soils

In this study, the sustainability of the electrokinetic remediation soil flushing (EKSFs) process integrated without and with adsorption barriers (EKABs) have been evaluated for the treatment of four soils contaminated with Atrazine, Oxyfluorfen, Chlorosulfuron and 2,4-D. To this purpose, the enviro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-06, Vol.927, p.172287-172287, Article 172287
Hauptverfasser: Fernández-Marchante, C.M., Vieira dos Santos, E., Souza, F.L., Martínez-Huitle, C.A., Rodríguez-Gómez, A., Lobato, J., Rodrigo, M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, the sustainability of the electrokinetic remediation soil flushing (EKSFs) process integrated without and with adsorption barriers (EKABs) have been evaluated for the treatment of four soils contaminated with Atrazine, Oxyfluorfen, Chlorosulfuron and 2,4-D. To this purpose, the environmental effects of both procedures (EKSFs and EKABs) have been determined through a life cycle assessment (LCA). SimaPro 9.3.0.3 was used as software tool and Ecoinvent 3.3 as data base to carry out the inventory of the equipment of each remediation setup based on experimental measurements. The environmental burden was quantified using the AWARE, USEtox, IPPC, and ReCiPe methods into 3 Endpoint impact categories (and damage to human health, ecosystem and resources) and 7 Midpoints impact categories (water footprint, global warming potential, ozone depletion, human toxicity (cancer and human non-cancer), freshwater ecotoxicity and terrestrial ecotoxicity). In general terms, the energy applied to treatment (using the Spanish energy mix) was the parameter with the greatest influence on the carbon footprint, ozone layer depletion and water footprint accounting for around 70 % of the overall impact contribution. On the other hand, from the point of view of human toxicity and freshwater ecotoxicity of soil treatments with 32 mg kg−1 of the different pesticides, the EKSF treatment is recommended for soils with Chlorosulfuron. In this case, the carbon footprint and water footprint reached values around 0.36 kg of CO2 and 114 L of water per kg of dry soil, respectively. Finally, a sensitivity analysis was performed assuming different scenarios. [Display omitted] •The use of adsorption barriers does not significantly improve the sustainability.•Gas capture coupled to these treatments would be advisable to reduce human toxicity.•Reduction of ecotoxicity is most favored for soil treatments with Chlorosulfuron.•Solar energy and Li batteries reduces the impact of all environmental categories.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2024.172287