Glacier area change and its impact on runoff in the Manas River Basin, Northwest China from 2000 to 2020

Understanding the distribution and dynamics of glaciers is of great significance to the management and allocation of regional water resources and socio-economic development in arid regions of Northwest China. In this study, based on 36 Landsat images, we extracted the glacier boundaries in the Manas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of arid land 2024-07, Vol.16 (7), p.877-894
Hauptverfasser: Wang, Tongxia, Chen, Fulong, Long, Aihua, Zhang, Zhengyong, He, Chaofei, Lyu, Tingbo, Liu, Bo, Huang, Yanhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding the distribution and dynamics of glaciers is of great significance to the management and allocation of regional water resources and socio-economic development in arid regions of Northwest China. In this study, based on 36 Landsat images, we extracted the glacier boundaries in the Manas River Basin, Northwest China from 2000 to 2020 using eCognition combined with band operation, GIS (geographic information system) spatial overlay techniques, and manual visual interpretation. We further analyzed the distribution and variation characteristics of glacier area, and simulated glacial runoff using a distributed degree-day model to explore the regulation of runoff recharge. The results showed that glacier area in the Manas River Basin as a whole showed a downward trend over the past 21 a, with a decrease of 10.86% and an average change rate of −0.54%/a. With the increase in glacier scale, the number of smaller glaciers decreased exponentially, and the number and area of larger glaciers were relatively stable. Glacier area showed a normal distribution trend of increasing first and then decreasing with elevation. About 97.92% of glaciers were distributed at 3700–4800 m, and 48.11% of glaciers were observed on the northern and northeastern slopes. The retreat rate of glaciers was the fastest (68.82%) at elevations below 3800 m. There was a clear rise in elevation at the end of glaciers. Glaciers at different slope directions showed a rapid melting trend from the western slope to the southern slope then to the northern slope. Glacial runoff in the basin showed a fluctuating upward trend in the past 21 a, with an increase rate of 0.03×10 8 m 3 /a. The average annual glacial runoff was 4.80×10 8 m 3 , of which 33.31% was distributed in the ablation season (June–September). The average annual contribution rate of glacial meltwater to river runoff was 35.40%, and glacial runoff accounted for 45.37% of the total runoff during the ablation season. In addition, precipitation and glacial runoff had complementary regulation patterns for river runoff. The findings can provide a scientific basis for water resource management in the Manas River Basin and other similar arid inland river basins.
ISSN:1674-6767
2194-7783
DOI:10.1007/s40333-024-0080-5