Radix Isatidis polysaccharide (RIP) alleviates QX-genotype infectious bronchitis virus-induced interstitial nephritis through the Nrf2/NLRP3/Caspase-3 signaling pathway

Interstitial nephritis is the primary cause of mortality in IBV-infected chickens. Our previous research has demonstrated that Radix Isatidis polysaccharide (RIP) could alleviate this form of interstitial nephritis. To explore the mechanism, SPF chickens and chicken embryonic kidney cells (CEKs) wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-10, Vol.278 (Pt 2), p.134571, Article 134571
Hauptverfasser: Xiang, Xuelian, Huang, Yamei, Shen, Yuxi, Lv, Jiadai, Li, Wenwen, Dong, Mengyi, Sun, Yi, Xu, Jing, Cui, Min, Huang, Yong, Xia, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interstitial nephritis is the primary cause of mortality in IBV-infected chickens. Our previous research has demonstrated that Radix Isatidis polysaccharide (RIP) could alleviate this form of interstitial nephritis. To explore the mechanism, SPF chickens and chicken embryonic kidney cells (CEKs) were pre-treated with RIP and subsequently infected with QX-genotype IBV strain. Kidneys were sampled for transcriptomic and metabolomic analyses, and the cecum contents were collected for 16S rRNA gene sequencing. Results showed that pre-treatment with RIP led to a 50 % morbidity reduction in infected-chickens, along with decreased tissue lesion and viral load in the kidneys. Multi-omics analysis indicated three possible pathways (including antioxidant, anti-inflammatory and anti-apoptosis) which associated with RIP's efficacy against interstitial nephritis. Following further validation both in vivo and in vitro, the results showed that pre-treatment with RIP could activate the antioxidant transcription factor Nrf2, stimulate antioxidant enzyme expression, and consequently inhibit oxidative stress. Pre-treatment with RIP could also significantly reduce the expression of NLRP3 inflammasome and apoptosis-associated proteins (including Bax, Caspase-3, and Caspase-9). Additionally, RIP was also observed to promote the growth of beneficial bacteria in the intestine. Overall, pretreatment with RIP can alleviate QX-genotype IBV-induced interstitial nephritis via the Nrf2/NLRP3/Caspase-3 signaling pathway. This study lays the groundwork for the potential use of RIP in controlling avian infectious bronchitis (IB). •RIP can significantly reduce the morbidity of IBV-infected chickens.•RIP alleviates IBV-induced interstitial nephritis by Nrf2/NLRP3/Caspase-3 pathway.•RIP can promote the proliferation of intestinal beneficial bacteria.•RIP is a promising candidate medicine for the control of IB.
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2024.134571