Controllable synthesis of a hybrid mesoporous sheets-like Fe0.5NiS2@ P, N-doped carbon electrocatalyst for alkaline oxygen evolution reaction

[Display omitted] Owing to the high cost of precious metal catalysts for the oxygen evolution reaction (OER), the production of highly efficient and affordable electrocatalysts is important for generating pollution-free and renewable energy via electrochemical processes. A facile hydrothermal approa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2024-08, Vol.667, p.166-174
Hauptverfasser: Gomaa, Hassanien, An, Cuihua, Jiao, Penggang, Wu, Wenliu, A.H. Alzahrani, Hassan, Shenashen, Mohamed A., Deng, Qibo, Hu, Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Owing to the high cost of precious metal catalysts for the oxygen evolution reaction (OER), the production of highly efficient and affordable electrocatalysts is important for generating pollution-free and renewable energy via electrochemical processes. A facile hydrothermal approach was employed to synthesize hybrid mesoporous iron-nickel bimetallic sulfides @ P, N-doped carbon for the OER. The prepared Fe0.5NiS2@C exhibited an overpotential (η) of 250 mV at 10 mA/cm2. This exceeded the overpotentials recently reported for surface-modified P, N-doped carbon-based catalysts for the OER in a 1 M KOH medium. Moreover, the Fe0.5NiS2@C catalyst showed a notable Tafel slope of 90.5 mV/dec with long-dated stability even after 24 h at 10 mA/cm2. The superior OER performance of the Fe0.5NiS2@C catalysts may be due to their large surface area, sheet-like morphology with abundant active sites, fast transfer of mass and electrons, control of the electronic structure by co-treatment with heteroatoms (e.g., P and N), and the synergistic effect of bimetallic sulfides, making them favorable catalysts for the oxygen evolution reaction. Density functional theory (DFT) calculations showed that the Fe0.5NiS2@C catalyst exhibited strong H2O-adsorption energy. The enhanced OER activity of Fe0.5NiS2@C was attributed to its higher surface area, favorable H2O adsorption energy, improved electron transfer efficiency, and lower Gibbs free energy compared to those of the other proposed catalysts.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2024.04.079