Biochar assisted cultivation of Chlorella protothecoides for adsorption of tetracycline and electrochemical study on self-cultured Chlorella protothecoides

Microalgae present a viable mechanism for purifying aquatic environments through the absorption of organic pollutants. In this paper, Chlorella protothecoides was cultured in a tetracycline environment, and biochar was added during the cultivation process. Compared with conventionally cultured Chlor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2023-12, Vol.389, p.129810-129810, Article 129810
Hauptverfasser: Wang, Shuang, Zhou, Jiangyi, Zhang, Yifei, He, Sirong, Esakkimuthu, Sivakumar, Zhu, Kai, Kumar, Sunel, Lv, Gaojin, Hu, Xun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microalgae present a viable mechanism for purifying aquatic environments through the absorption of organic pollutants. In this paper, Chlorella protothecoides was cultured in a tetracycline environment, and biochar was added during the cultivation process. Compared with conventionally cultured Chlorella protothecoides, the addition of biochar for cultivation under a tetracycline environment increased the biomass of Chlorella protothecoides by 13.26 %. Moreover, the adsorption of tetracycline by biochar alone was not complete, but when mixed with Chlorella protothecoides, tetracycline was completely removed, which proved the biosorption of Chlorella protothecoides for low concentrations of tetracycline. Finally, the cultured Chlorella protothecoides was used further to prepare electrode materials, and it was found that the specific capacitance of the material reached 233.15F/g at a current density of 1 A/g. In this study, the use of biochar and Chlorella protothecoides to jointly adsorb tetracycline is of great significance for environmental protection and microalgae cultivation.
ISSN:0960-8524
1873-2976
DOI:10.1016/j.biortech.2023.129810