Effects of military training, warfare and civilian ammunition debris on the soil organisms: an ecotoxicological review

Civilian and military activities are sources of water and soil contamination by inorganic and organic contaminants caused by shooting practices, warfare, and/or mechanized military training. Lead poisoning and contaminant bioaccumulation due to spent shots or other related military contaminants have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology and fertility of soils 2024-08, Vol.60 (6), p.813-844
Hauptverfasser: Rodríguez-Seijo, Andrés, Fernández-Calviño, David, Arias-Estévez, Manuel, Arenas-Lago, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Civilian and military activities are sources of water and soil contamination by inorganic and organic contaminants caused by shooting practices, warfare, and/or mechanized military training. Lead poisoning and contaminant bioaccumulation due to spent shots or other related military contaminants have been widely studied for mammals, birds, and plants. Although there are different papers on the impact on earthworms, information on micro and mesofauna (i.e., collembola, nematodes, etc.) is still scarce. Here, we review the published data regarding the impact of civilian and military shooting activities, including war-impacted areas, focusing on soil organisms, from microbial communities to the ecotoxicological effects on terrestrial organisms. One hundred eleven studies were considered where earthworms and enchytraeids were widely studied, especially under ecotoxicological assays with Pb and energetic-related compounds from military explosives. There is a lack of information on soil organism groups, such as mites, ants, or gastropods, which play important roles in soil function. Data from combined exposures (e.g., PTEs + TNT and PTEs + PAHs) is scarce since several studies focused on a single contaminant, usually Pb, when combined contaminants would be more realistic. Ecotoxicological assays should also cover other understudied ammunition elements, such as Bi, Cu, or W.
ISSN:0178-2762
1432-0789
DOI:10.1007/s00374-024-01835-8