Is it time to start moving soil microbial fuel cell research out of the lab and into the field?
Soil microbial fuel cells (SMFCs) function as bioelectrochemical energy harvesters that convert electrons stored in soil organic matter into useful electrical energy. Broadly, an SMFC comprises three essential components: an anode buried in the soil (the negative terminal), a colony of exoelectrogen...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2024-11, Vol.949, p.175229, Article 175229 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Soil microbial fuel cells (SMFCs) function as bioelectrochemical energy harvesters that convert electrons stored in soil organic matter into useful electrical energy. Broadly, an SMFC comprises three essential components: an anode buried in the soil (the negative terminal), a colony of exoelectrogenic microorganisms residing on this anode, and a cathode (the positive terminal). As the exoelectrogens respire, they release electrons to the anode, which acts as an external receptor. These released electrons then flow through a load (e.g. a resistor), connecting the anode and cathode. Though minuscule, the electrical power produced by SMFCs has a number of potential applications such as sustaining low-power embedded electronics, pollutant remediation, or as a bio-sensing proxy for soil qualities and microbial activity. This discussion aims to emphasize the potential of SMFCs in addressing real-world environmental issues and to generate interest in the larger scientific community for broad interdisciplinary research efforts, particularly in field deployments.
[Display omitted]
•SMFCs are a growing area of microbial fuel cell research.•SMFC research requires multidisciplinary teams to be the most effective.•The most critical gap in SMFC research is a lack of field deployments. |
---|---|
ISSN: | 0048-9697 1879-1026 1879-1026 |
DOI: | 10.1016/j.scitotenv.2024.175229 |