Mass Spectrometry Acquisition and Fractionation Recommendations for TMT11 and TMT16 Labeled Samples

Proteome coverage and accurate protein quantification are both important for evaluating biological systems; however, compromises between quantification, coverage, and mass spectrometry (MS) resources are often necessary. Consequently, experimental parameters that impact coverage and quantification m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of proteome research 2024-08, Vol.23 (8), p.3704-3715
Hauptverfasser: Riley, Ryan M., Negri, Gian Luca, Cheng, S.-W. Grace, Spencer Miko, Sandra E., Morin, Ryan D., Morin, Gregg B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Proteome coverage and accurate protein quantification are both important for evaluating biological systems; however, compromises between quantification, coverage, and mass spectrometry (MS) resources are often necessary. Consequently, experimental parameters that impact coverage and quantification must be adjusted, depending on experimental goals. Among these parameters is offline prefractionation, which is utilized in MS-based proteomics to decrease sample complexity resulting in higher overall proteome coverage upon MS analysis. Prefractionation leads to increases in required MS analysis time, although this is often mitigated by isobaric labeling using tandem-mass tags (TMT), which allow samples to be multiplexed. Here we evaluate common prefractionation schemes, TMT variants, and MS acquisition methods and their impact on protein quantification and coverage. Furthermore, we provide recommendations for experimental design depending on the experimental goals.
ISSN:1535-3893
1535-3907
1535-3907
DOI:10.1021/acs.jproteome.4c00014