Glycyrrhizin alleviates BoAHV-1-induced lung injury in guinea pigs by inhibiting the NF-κB/NLRP3 Signaling pathway and activating the Nrf2/HO-1 Signaling pathway
Varicellovirus bovinealpha 1 (BoAHV-1) is a significant pathogen responsible for respiratory disease in cattle, capable of inducing lung damage independently or co-infection with bacteria. The widespread spread of BoAHV-1 in cattle herds has caused substantial economic losses to the cattle industry....
Gespeichert in:
Veröffentlicht in: | Veterinary research communications 2024-08, Vol.48 (4), p.2499-2511 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Varicellovirus bovinealpha 1
(BoAHV-1) is a significant pathogen responsible for respiratory disease in cattle, capable of inducing lung damage independently or co-infection with bacteria. The widespread spread of BoAHV-1 in cattle herds has caused substantial economic losses to the cattle industry. The pathogenic mechanisms of BoAHV-1 are often relevant to robust inflammatory responses, increased oxidative burden, and the initiation of apoptosis. Glycyrrhizin (GLY) is a small-molecule triterpenoid saponin compound obtained from the herb liquorice, which has a broad spectrum of pharmacological properties such as antiviral, anti-inflammatory, and antioxidant effects. Furthermore, GLY regulates lung physiology by modulating oxidative stress, inflammatory response, and cell apoptosis through interference with the NF-κB/NLRP3 and Nrf2/HO-1 Signaling pathways. However, the potential of GLY to mitigate lung injury induced by BoAHV-1 and its underlying mechanism remains unclear. Therefore, in this study, we investigated the protective effect of GLY against pulmonary injury induced by BoAHV-1 in a guinea pig model by reducing viral load and suppressing the inflammatory response, oxidative stress, and apoptosis. The results of this study demonstrated that GLY exerted a protective effect against BoAHV-1-induced lung injury in guinea pigs. Specifically, GLY reduced the levels of pro-inflammatory cytokines interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and interleukin (IL)-8 in guinea pig tissues while suppressing the expression of Caspase-1. Additionally, GLY reduced BoAHV-1 load and the number of TUNEL-positive lung cells in guinea pig lungs while inhibiting Caspase 3 protein expression. Furthermore, GLY significantly enhanced lung antioxidant capacity by increasing superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activity while simultaneously reducing malondialdehyde (MDA) levels. Lung histological observation and score further validated the protective effect of GLY on BoAHV-1-induced lung injury. Furthermore, we observed that the expression of phosphorylated NF-κB p65 (p-NF-κB p65) and NLRP3 proteins in the lung tissue of BoAHV-1-infected guinea pigs decreased after GLY treatment while the expression of Nrf2 and HO-1 proteins increased. These results indicated that GLY inhibited the NF-κB/NLRP3 Signaling pathway and activated the Nrf2/HO-1 Signaling pathway during BoAHV-1 infection. Ultimately, our findings demonstrated that GLY |
---|---|
ISSN: | 0165-7380 1573-7446 1573-7446 |
DOI: | 10.1007/s11259-024-10436-7 |