A Versatile β‑Glycosidase from Petroclostridium xylanilyticum Prefers the Conversion of Ginsenoside Rb3 over Rb1, Rb2, and Rc to Rd by Its Specific Cleavage Activity toward 1,6-Glycosidic Linkages
To convert ginsenosides Rb1, Rb2, Rb3, and Rc into Rd by a single enzyme, a putative β-glycosidase (Pxbgl) from the xylan-degrading bacterium Petroclostridium xylanilyticum was identified and used. The k cat/K m value of Pxbgl for Rb3 was 18.18 ± 0.07 mM–1/s, which was significantly higher than thos...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2024-08, Vol.72 (31), p.17510-17523 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To convert ginsenosides Rb1, Rb2, Rb3, and Rc into Rd by a single enzyme, a putative β-glycosidase (Pxbgl) from the xylan-degrading bacterium Petroclostridium xylanilyticum was identified and used. The k cat/K m value of Pxbgl for Rb3 was 18.18 ± 0.07 mM–1/s, which was significantly higher than those of Pxbgl for other ginsenosides. Pxbgl converted almost all Rb3 to Rd with a productivity of 5884 μM/h, which was 346-fold higher than that of only β-xylosidase from Thermoascus aurantiacus. The productivity of Rd from the Panax ginseng root and Panax notoginseng leaf was 146 and 995 μM/h, respectively. Mutants N293 K and I447L from site-directed mutagenesis based on bioinformatics analysis showed an increase in specific activity of 29 and 7% toward Rb3, respectively. This is the first report of a β-glycosidase that can simultaneously remove four different glycosyls at the C–20 position of natural PPD-type ginsenosides and produce Rd as the sole product from P. notoginseng leaf extracts with the highest productivity. |
---|---|
ISSN: | 0021-8561 1520-5118 1520-5118 |
DOI: | 10.1021/acs.jafc.4c03909 |