A Versatile β‑Glycosidase from Petroclostridium xylanilyticum Prefers the Conversion of Ginsenoside Rb3 over Rb1, Rb2, and Rc to Rd by Its Specific Cleavage Activity toward 1,6-Glycosidic Linkages

To convert ginsenosides Rb1, Rb2, Rb3, and Rc into Rd by a single enzyme, a putative β-glycosidase (Pxbgl) from the xylan-degrading bacterium Petroclostridium xylanilyticum was identified and used. The k cat/K m value of Pxbgl for Rb3 was 18.18 ± 0.07 mM–1/s, which was significantly higher than thos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2024-08, Vol.72 (31), p.17510-17523
Hauptverfasser: Xu, Wenqi, Duan, Cuicui, Ma, Fumin, Li, Dan, Li, Xiaolei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To convert ginsenosides Rb1, Rb2, Rb3, and Rc into Rd by a single enzyme, a putative β-glycosidase (Pxbgl) from the xylan-degrading bacterium Petroclostridium xylanilyticum was identified and used. The k cat/K m value of Pxbgl for Rb3 was 18.18 ± 0.07 mM–1/s, which was significantly higher than those of Pxbgl for other ginsenosides. Pxbgl converted almost all Rb3 to Rd with a productivity of 5884 μM/h, which was 346-fold higher than that of only β-xylosidase from Thermoascus aurantiacus. The productivity of Rd from the Panax ginseng root and Panax notoginseng leaf was 146 and 995 μM/h, respectively. Mutants N293 K and I447L from site-directed mutagenesis based on bioinformatics analysis showed an increase in specific activity of 29 and 7% toward Rb3, respectively. This is the first report of a β-glycosidase that can simultaneously remove four different glycosyls at the C–20 position of natural PPD-type ginsenosides and produce Rd as the sole product from P. notoginseng leaf extracts with the highest productivity.
ISSN:0021-8561
1520-5118
1520-5118
DOI:10.1021/acs.jafc.4c03909