β-cyclodextrin modified GO ultrafiltration membranes with enhanced antifouling property for water purification

The study investigated the influence of additives on the fabrication of mixed matrix membranes comprising polyethersulfone (PES), with a specific focus on hydrophilicity, flux, morphology, and antifouling properties. Carboxymethyl modified β-cyclodextrin (CMβ-CD) was used to enhance the dispersion a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research 2024-10, Vol.258, p.119472, Article 119472
Hauptverfasser: Zhu, Meng, Liang, Hao, Gong, Xiaobo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The study investigated the influence of additives on the fabrication of mixed matrix membranes comprising polyethersulfone (PES), with a specific focus on hydrophilicity, flux, morphology, and antifouling properties. Carboxymethyl modified β-cyclodextrin (CMβ-CD) was used to enhance the dispersion and hydrophilicity of graphene oxide (GO), leading to the formation of a hydrophilic and stable composite nanoparticle (CMCD@GO). The hydrophilicity (WCA 93.2%) due to reduced roughness and higher hydrophilicity, while the GO-modified PES membrane (MGO-5) exhibited lower NAs rejection (87.2%). Furthermore, the MCDGO-5 membrane showed higher flux recovery ratio (FRR) of 79.3% compared to MGO-5 membrane (68.5%) after three cycles, indicating the antifouling performance of MCDGO-x for NAs was significantly improved. The combination of CMβ-CD and GO enhance the flux and antifouling properties of PES ultrafiltration membranes, suggesting significant potential for applications in the purification of oil sands process water and the treatment of oily wastewater. •Antifouling membrane was prepared by carboxymethyl β-cyclodextrin and GO.•The composite membrane shows good antifouling properties.•Separation and antifouling performance were comprehensively studied.•Membrane formation and antifouling mechanisms were proposed.
ISSN:0013-9351
1096-0953
1096-0953
DOI:10.1016/j.envres.2024.119472