Temperature-induced migration of electro-neutral interacting colloidal particles

Migration of colloidal particles induced by temperature gradients is commonly referred to as thermodiffusion, thermal diffusion, or the (Ludwig-)Soret effect. The thermophoretic force experienced by a colloidal particle that drives thermodiffusion consists of two distinct contributions: a contributi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2024-07, Vol.666, p.457-471
Hauptverfasser: Dhont, J.K.G., Briels, W.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Migration of colloidal particles induced by temperature gradients is commonly referred to as thermodiffusion, thermal diffusion, or the (Ludwig-)Soret effect. The thermophoretic force experienced by a colloidal particle that drives thermodiffusion consists of two distinct contributions: a contribution resulting from internal degrees of freedom of single colloidal particles, and a contribution due to the interactions between the colloids. We present an irreversible thermodynamics based theory for the latter collective contribution to the thermophoretic force. The present theory leads to a novel “thermophoretic interaction force” (for uncharged colloids), which has not been identified in earlier approaches. In addition, an N-particle Smoluchowski equation including temperature gradients is proposed, which complies with the irreversible thermodynamics approach. A comparison with experiments on colloids with a temperature dependent attractive interaction potential over a large concentration and temperature range is presented. The comparison shows that the novel thermophoretic interaction force is essential to describe data on the Soret coefficient and the thermodiffusion coefficient. •An irreversible thermodynamics based theory is presented leading to a novel “thermophoretic interaction force” on colloidal particles that originates from their mutual interactions.•Explicit microscopic expressions are found for the Soret coefficient and the thermodiffusion coefficient in terms of the (equilibrium) pair-correlation function.•The novel thermophoretic interaction force is essential to be able to describe the experimental data.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2024.04.031