Ultrasound-enhanced catalytic hairpin assembly capable of ultrasensitive microRNA biosensing for the early screening of Alzheimer's disease

Catalytic hairpin assembly (CHA) is a promising enzyme-free, isothermal signal amplification strategy, but the relatively time-consuming strand replacement limits its application scenarios. Here, we developed an ultrasound-enhanced catalytic hairpin assembly (UECHA) biosensing platform for early scr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2023-12, Vol.242, p.115746-115746, Article 115746
Hauptverfasser: Luo, Yong, Chen, Jingyu, Liang, Jiahui, Liu, Yizhen, Liu, Conghui, Liu, Yibiao, Xu, Tailin, Zhang, Xueji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Catalytic hairpin assembly (CHA) is a promising enzyme-free, isothermal signal amplification strategy, but the relatively time-consuming strand replacement limits its application scenarios. Here, we developed an ultrasound-enhanced catalytic hairpin assembly (UECHA) biosensing platform for early screening of Alzheimer's disease by introducing a portable acoustic-drive platform with functionalized microspheres for effective biomarkers enrichment and fluorescence enhancement. By constructing a gradient ultrasonic field in a microcavity, the platform concentrates the functionalized microspheres in a central position, accompanied by an enhanced fluorescence signal with a specific release. In addition, the programmable frequency modulation can also modify the acoustic potential well and effectively promote non-equilibrium chemical reactions such as CHA (25 min). Compared with the conventional catalytic hairpin assembly (CHA), UECHA allows for direct and quantitative measurement of AD miRNAs down to 3.55 × 10−15 M in 1 μL samples. This visual analysis of ultra-trace biomarkers based on acoustic enrichment and promotion provides a new perspective for the rapid and highly sensitive clinical detection of Alzheimer's disease.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2023.115746