Phenylpropanoids Following Wounding and Infection of Sweet Sorghum Lines Differing in Responses to Stalk Pathogens

Sweet sorghum ( ) lines M81-E and Colman were previously shown to differ in responses to and , stalk rot pathogens that can reduce the yields and quality of biomass and extracted sugars. Inoculated tissues were compared for transcriptomic, phenolic metabolite, and enzymatic activity during disease d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phytopathology 2024-02, Vol.114 (1), p.PHYTO12220459R-192
Hauptverfasser: Khasin, Maya, Bernhardson, Lois F, O'Neill, Patrick M, Palmer, Nathan A, Scully, Erin D, Sattler, Scott E, Sarath, Gautam, Funnell-Harris, Deanna L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sweet sorghum ( ) lines M81-E and Colman were previously shown to differ in responses to and , stalk rot pathogens that can reduce the yields and quality of biomass and extracted sugars. Inoculated tissues were compared for transcriptomic, phenolic metabolite, and enzymatic activity during disease development 3 and 13 days after inoculation (DAI). At 13 DAI, M81-E had shorter mean lesion lengths than Colman when inoculated with either pathogen. Transcripts encoding monolignol biosynthetic and modification enzymes were associated with transcriptional wound (control) responses of both lines at 3 DAI. Monolignol biosynthetic genes were differentially coexpressed with transcriptional activator SbMyb76 in all Colman inoculations, but only following inoculation in M81-E, suggesting that SbMyb76 is associated with lignin biosynthesis during pathogen responses. In control inoculations, defense-related genes were expressed at higher levels in M81-E than Colman. Line, treatment, and timepoint differences observed in phenolic metabolite and enzyme activities did not account for observed differences in lesions. However, generalized additive models were able to relate metabolites, but not enzyme activities, to lesion length for quantitatively modeling disease progression: in M81-E, but not Colman, sinapic acid levels positively predicted lesion length at 3 DAI when cell wall-bound syringic acid was low, soluble caffeic acid was high, and lactic acid was high, suggesting that sinapic acid may contribute to responses at 3 DAI. These results provide potential gene targets for development of sweet sorghum varieties with increased stalk rot resistance to ensure biomass and sugar quality.
ISSN:0031-949X
1943-7684
DOI:10.1094/PHYTO-12-22-0459-R