Influence of structural organization on mucoadhesive properties of poloxamer-hyaluronic acid-based micelles and hydrogels: From molecular modelling to biointerfaces interactions
New pharmaceutical formulations have been proposed as strategies to improve transport and provide best conditions to control the drug release rate in specific biological environments, such as mucosa surfaces. Herein, formulations containing binary systems Poloxamer (PL) 407 15 % and PL 338 15 %, com...
Gespeichert in:
Veröffentlicht in: | Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2024-10, Vol.698, p.134527, Article 134527 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | New pharmaceutical formulations have been proposed as strategies to improve transport and provide best conditions to control the drug release rate in specific biological environments, such as mucosa surfaces. Herein, formulations containing binary systems Poloxamer (PL) 407 15 % and PL 338 15 %, combined with hyaluronic acid, carrying the local anesthetic bupivacaine (BVC), were studied by molecular dynamics, while other structural parameters were determined by Dynamic Light Scattering for stablishing relationships with mucoadhesive properties and cytotoxicity evaluation. The binary system PL 407 15 %/PL 338 15 % exhibited a well-organized structural morphology, with more hydrated corona, and increased mucoadhesive properties over mucin layers. After hyaluronic acid (HA) incorporation, it was observed an increase on the force of detachment, possibly due to HA role as a linker among mucin layers independently of PL supramolecular structures. On the other hand, the addition of BVC or HA/BVC into the binary system decreased the force of detachment, as a response of augmented of compactness of these hydrogels caused by desolvation of PO core, showing the influence of all components and their chemical interactions into the structural organization and their biopharmaceutical performance relationships.
[Display omitted] |
---|---|
ISSN: | 0927-7757 1873-4359 |
DOI: | 10.1016/j.colsurfa.2024.134527 |