Chirality-driven strong thioredoxin reductase inhibition

Overexpression of thioredoxin reductase (TXNRD) plays crucial role in tumorigenesis. Therefore, designing TXNRD inhibitors is a promising strategy for targeted anticancer drug development. However, poor selectivity has always been a challenge, resulting in unavoidable toxicity in clinic. Herein we d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2024-12, Vol.311, p.122705, Article 122705
Hauptverfasser: Chen, Mingkai, Wang, Junping, Cai, Fei, Guo, Junxian, Qin, Xiaoyu, Zhang, Huajie, Chen, Tianfeng, Ma, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Overexpression of thioredoxin reductase (TXNRD) plays crucial role in tumorigenesis. Therefore, designing TXNRD inhibitors is a promising strategy for targeted anticancer drug development. However, poor selectivity has always been a challenge, resulting in unavoidable toxicity in clinic. Herein we demonstrate a strategy to develop highly selective chiral metal complexes-based TXNRD inhibitors. By manipulating the conformation of two distinct weakly interacting groups, we optimize the compatibility between the drug and the electrophilic group within the active site of TXNRD to enhance their non-covalent interaction, thus effectively avoids the poor selectivity deriving from covalent drug interaction, on the basis of ensuring the strong inhibition. Detailed experimental and computational results demonstrate that the chiral isomeric drugs bind to the active site of TXNRD, and the interaction strength is well modulated by chirality. Especially, the meso-configuration, in which the two large sterically hindered active groups are positioned on opposite sides of the drug, exhibits the highest number of non-covalent interactions and most effective inhibition on TXNRD. Taken together, this work not only provides a novel approach for developing highly selective proteinase inhibitors, but also sheds light on possible underlying mechanisms for future application. Herein, by manipulating the conformation of two distinct weakly interacting groups using chirality, we optimized the compatibility between the drug and the electrophilic group within the active site of TXNRD to enhance the non-covalent interaction, leading to selectivity TXNRD inhibition and subsequent cancer cell death. [Display omitted]
ISSN:0142-9612
1878-5905
1878-5905
DOI:10.1016/j.biomaterials.2024.122705