Fingerprinting DNAzyme Cross-Reactivity for Pattern-Based Detection of Heavy Metals

Heavy metal contamination in food and water is a major public health concern because heavy metals are toxic in minute amounts. DNAzyme sensors are emerging as a promising tool for rapid onsite detection of heavy metals, which can aid in minimizing exposure. However, DNAzyme activity toward its targe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2024-07, Vol.96 (29), p.11780-11789
Hauptverfasser: Morrison, Kevin, Tincher, Madeleine, Rothchild, Alexis, Yehl, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heavy metal contamination in food and water is a major public health concern because heavy metals are toxic in minute amounts. DNAzyme sensors are emerging as a promising tool for rapid onsite detection of heavy metals, which can aid in minimizing exposure. However, DNAzyme activity toward its target metal is not absolute and has cross-reactivity with similar metals, which is a major challenge in the wide-scale application of DNAzyme sensors for environmental monitoring. To address this, we constructed a four DNAzyme array (17E, GR-5, EtNA, and NaA43) and used a pattern-based readout to improve sensor accuracy. We measured cross-reactivity between three metal cofactors (Pb2+, Ca2+, and Na+) and common interferents (Mg2+, Zn2+, Mn2+, UO2 2+, Li+, K+, and Ag+) and then used t-SNE analysis to identify and quantify the metal ion. We further showed that this method can be used for distinguishing mixtures of metals and detecting Pb2+ in environmental soil samples at micromolar concentrations.
ISSN:0003-2700
1520-6882
1520-6882
DOI:10.1021/acs.analchem.4c01331