Sustainable utilization of Fe3O4-modified activated lignite for aqueous phosphate removal and ANN modeling
Lignites are widely available and cost-effective in many countries. Sustainable methods for their utilization drive innovation, potentially advancing environmental sustainability and resource efficiency. In the present study, Fe3O4 (∼25.1 nm) supported on KOH-activated lignite (A−L) displayed 8 time...
Gespeichert in:
Veröffentlicht in: | Environmental research 2024-11, Vol.260, p.119618, Article 119618 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lignites are widely available and cost-effective in many countries. Sustainable methods for their utilization drive innovation, potentially advancing environmental sustainability and resource efficiency. In the present study, Fe3O4 (∼25.1 nm) supported on KOH-activated lignite (A−L) displayed 8 times higher phosphate removal than pristine A−L (67.6 mg/g vs. 8.5 mg/g at pH 5, 50 mg of absorbent in 25 mL of 1500 ppm [phosphate]), owing to its abundant Fe3O4 (10 wt% of Fe) nanoparticle content. The removal occurred within ∼2 h, following a pseudo-second-order kinetic model. Across pH levels ranging from 5.0 to 9.0, Fe3O4−A−L's phosphate removal occurs via both chemisorption and precipitation, as evident by kinetic, pH, and XPS analyses. The phosphate adsorption fits better with the Freundlich isotherm. The combined benefits of facile recovery, rapid phosphate uptake, straightforward regeneration, and attractive post-adsorption benefits (e.g., possibly use as a Fe, P-rich fertilizer) make magnetic Fe3O4−A−L a promising candidate for real-world applications. Artificial Neural Network (ANN) modeling indicates an excellent accuracy (R2 = 0.99) in predicting the amount of phosphate removed by Fe3O4−A−L. Sensitivity analysis revealed both temperature and initial concentration as the most influencing factors. Leveraging lignite in environmentally friendly applications not only addresses immediate challenges but also aligns with sustainability goals. The study clearly articulates the potential benefits of utilizing lignite for sustainable phosphate removal and recovery, offering avenues for mitigating environmental concerns while utilizing resources efficiently.
[Display omitted]
•Widespread and affordable lignite is a valuable resource for sustainable innovation.•The Fe3O4−A−L showed an 8- fold increase of phosphate removal than activated-lignite.•Phosphate adsorption influenced by pH, involving chemisorption and precipitation.•ANN modeling showed high accuracy (R2 = 0.99) in predicting phosphate removal.•Utilizing lignite in eco-friendly applications addresses immediate environmental footprint. |
---|---|
ISSN: | 0013-9351 1096-0953 1096-0953 |
DOI: | 10.1016/j.envres.2024.119618 |