Well-defined asymmetric nitrogen/carbon-coordinated single metal sites for carbon dioxide conversion

The catalytic CO2 conversion activity of well-defined M-N3C1 sites is evaluated by density functional theory calculations and subsequent experimental tests. [Display omitted] Asymmetric nitrogen/carbon-coordinated single metal sites (M-NxC4-x) outperform symmetric M-N4 sites in carbon dioxide (CO2)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2024-12, Vol.675, p.683-688
Hauptverfasser: Huang, Senhe, Fang, Ziyu, Lu, Chenbao, Zhang, Jichao, Sun, Jie, Ji, Huiping, Zhu, Jinhui, Zhuang, Xiaodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The catalytic CO2 conversion activity of well-defined M-N3C1 sites is evaluated by density functional theory calculations and subsequent experimental tests. [Display omitted] Asymmetric nitrogen/carbon-coordinated single metal sites (M-NxC4-x) outperform symmetric M-N4 sites in carbon dioxide (CO2) electroreduction. However, the challenge of crafting well-defined M-NxC4-x sites complicates the understanding of their structure-catalytic performance relationship. In this study, we employ metallized N-confused tetraphenylporphyrin (M-NCTPP) to investigate CO2 conversion on M-N3C1 sites using both density functional theory and experimental methods. The optimal cobalt (Co)-N3C1 site (Co-NCTPP) achieves a current density of 500 mA cm−2 and a carbon monoxide Faraday efficiency exceeding 90 % at −1.25 V vs. the reversible hydrogen electrode, surpassing the performance of Co-N4 (Co-TPP). This research introduces a novel approach for designing and synthesizing high-activity heteroatom-anchored single metal sites, advancing fundamental understanding in the field.
ISSN:0021-9797
1095-7103
1095-7103
DOI:10.1016/j.jcis.2024.07.064