Biochemical characterization of an esterase from Thermobifida fusca YX with acetyl xylan esterase activity

Background Esterases (EC 3.1.1.X) are enzymes that catalyze the hydrolysis ester bonds. These enzymes have large potential for diverse applications in fine industries, particularly in pharmaceuticals, cosmetics, and bioethanol production. Methods and results In this study, a gene encoding an esteras...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology reports 2024-12, Vol.51 (1), p.767-767, Article 767
Hauptverfasser: da Silva, Adriana S., Adriani, Patricia P., de Oliveira, Gabriel S., Rocha, Adriana Rios Lopes, Perpétuo, Elen A., Dias, Marcio V. B., Chambergo, Felipe S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Esterases (EC 3.1.1.X) are enzymes that catalyze the hydrolysis ester bonds. These enzymes have large potential for diverse applications in fine industries, particularly in pharmaceuticals, cosmetics, and bioethanol production. Methods and results In this study, a gene encoding an esterase from Thermobifida fusca YX (TfEst) was successfully cloned, and its product was overexpressed in Escherichia coli and purified using affinity chromatography. The TfEst kinetic assay revealed catalytic efficiencies of 0.58 s −1  mM −1 , 1.09 s −1  mM −1 , and 0.062 s −1  mM −1 against p -Nitrophenyl acetate, p -Nitrophenyl butyrate, and 1-naphthyl acetate substrates, respectively. Furthermore, TfEst also exhibited activity in a pH range from 6.0 to 10.0, with maximum activity at pH 8.0. The enzyme demonstrated a half-life of 20 min at 70 °C. Notably, TfEst displayed acetyl xylan esterase activity as evidenced by the acetylated xylan assay. The structural prediction of TfEst using AlphaFold indicated that has an α/β-hydrolase fold, which is consistent with other esterases. Conclusions The enzyme stability over a broad pH range and its activity at elevated temperatures make it an appealing candidate for industrial processes. Overall, TfEst emerges as a promising enzymatic tool with significant implications for the advancement of biotechnology and biofuels industries.
ISSN:0301-4851
1573-4978
1573-4978
DOI:10.1007/s11033-024-09601-7