Predicting the dynamics of per- and polyfluoroalkyl substances in coastal regions of Africa: vulnerability index and adverse ecological pathways from remote-sensed variables
This study aimed to predict the dynamics of per- and polyfluoroalkyl substance (PFAS) contamination and ecological vulnerability within coastal regions of Africa utilizing time-averaged remote-sensed data patterns from 2020 to 2023. The analysis identified PFAS contamination hotspots along the coast...
Gespeichert in:
Veröffentlicht in: | Environmental monitoring and assessment 2024-06, Vol.196 (6), p.573-573, Article 573 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study aimed to predict the dynamics of per- and polyfluoroalkyl substance (PFAS) contamination and ecological vulnerability within coastal regions of Africa utilizing time-averaged remote-sensed data patterns from 2020 to 2023. The analysis identified PFAS contamination hotspots along the coast of Africa, particularly in western Africa around Nigeria and in areas spanning Equatorial Guinea and Guinea-Bissau, with risk influenced by eastward wind patterns, overland runoff, and elevated aerosol optical depth (AOD) values. Regional trends indicated that variations in solar energy absorption and surface air temperature could influence PFAS dynamics in North Africa, South Africa, East Africa, and West Africa. In North Africa, intermediate overland runoff and lower sea-surface temperatures were observed. In South Africa, there were intermediate runoff levels and warmer sea-surface temperatures. East Africa experienced intermediate runoff as well. In West Africa, there was increased susceptibility to high overland runoff and aerosol-related PFAS contamination. From the weighted vulnerability index, significant disparities in environmental conditions across African coastal regions revealed that North Africa had relatively lower vulnerability, while West Africa had the highest susceptibility to per- and polyfluoroalkyl substance (PFAS) contamination. This study emphasizes the necessity for region-specific vulnerability index models and targeted mitigation strategies to address diverse ecological and health risks from PFAS contamination along the African coast. Regional and international collaboration, spearheaded by organizations such as the AU and ECOWAS, is essential, with tailored policies aligned with the SDGs, Agenda 2063, and NEPAD crucial for effective environmental management, urging policymakers to prioritize cooperation and resource sharing for comprehensive sustainability goals. |
---|---|
ISSN: | 0167-6369 1573-2959 1573-2959 |
DOI: | 10.1007/s10661-024-12723-x |