Essential role of electrocatalysis in electrochemiluminescence: Recent advances and perspectives
Electrochemical reactions play a critical role in the electrochemiluminescence (ECL) process, serving as the rate-determing steps. Electrocatalysis (EC) is a powerful approach to accelerate electron transfer rates and promote electrochemical reactions, thereby improving ECL properties. With the incr...
Gespeichert in:
Veröffentlicht in: | TrAC, Trends in analytical chemistry (Regular ed.) Trends in analytical chemistry (Regular ed.), 2024-09, Vol.178, p.117812, Article 117812 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrochemical reactions play a critical role in the electrochemiluminescence (ECL) process, serving as the rate-determing steps. Electrocatalysis (EC) is a powerful approach to accelerate electron transfer rates and promote electrochemical reactions, thereby improving ECL properties. With the increasing applications of EC in ECL, how the EC affect the ECL performance have attracted increasing attentions. Understanding the strategies and mechanisms of EC regulation to enhance ECL properties can facilitate the effective application of EC in the ECL field, and promote rational design of EC-mediated ECL systems. This review provides a concise overview of the recent advancements in catalyst-class-dependent EC-based ECL, elucidating the mechanisms of different electrocatalysts in ECL systems. Additionally, we envisage the challenges and unresolved issues in this area. With the advancement of EC technology and interdisciplinary research, EC-based ECL has garnered significant attention and is poised to remain a vibrant field in the years ahead.
[Display omitted]
•Electrocatalysis is an efficient approach to enhance the ECL properties.•Summarizes the recent progress of catalyst-class-dependent electrocatalysis -based ECL.•Elucidates the mechanisms and sensing strategies of different electrocatalysts in ECL systems.•Discusses the remaining challenges and unresolved issues in electrocatalysis -based ECL area. |
---|---|
ISSN: | 0165-9936 |
DOI: | 10.1016/j.trac.2024.117812 |