Paper substrate designed with TEMPO-oxidized cellulose nanofibers/cationic guar gum hydrogel and its application in a colorimetric biosensor for rapid bacteria detection
The monitoring of foodborne bacterial contamination requires simple and convenient biosensors. This work describes a novel paper-based colorimetric biosensor for the rapid and sensitive bacteria detection. The biosensor was constructed via the encapsulation of D-alanyl-D-alanine capped gold nanopart...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-08, Vol.274 (Pt 2), p.133497, Article 133497 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The monitoring of foodborne bacterial contamination requires simple and convenient biosensors. This work describes a novel paper-based colorimetric biosensor for the rapid and sensitive bacteria detection. The biosensor was constructed via the encapsulation of D-alanyl-D-alanine capped gold nanoparticles (DADA-AuNPs) in a modified paper that was fabricated by the freeze-drying of TEMPO-oxidized cellulose nanofibers/cationic guar gum composite hydrogel-modified filter paper. The results indicated that the size of DADA-AuNPs largely determined the color of their aqueous system and they exhibited light red to dark red as their size increased from around 6 to 36 nm. All these different sized DADA-AuNPs turned into colorless when encountered with either S. aureus or E. coli. In particular, the smaller the DADA-AuNPs size, the faster the discoloration. The encapsulation of DADA-AuNPs into modified paper negligibly changed their responsiveness towards bacteria. In comparison to the original filter paper and oven-dried hydrogel-modified filter paper, the freeze-dried hydrogel-modified paper was demonstrated to be a better substrate for the encapsulation of DADA-AuNPs since they could be loaded with a larger amount of DADA-AuNPs in a faster way and showed a better perceivable color. This work demonstrated a promising paper-based colorimetric biosensor for the facile and rapid detection of bacteria.
[Display omitted] |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.133497 |