Plasticization mechanism of biobased plasticizers comprising polyethylene glycol diglycidyl ether-butyl citrate with both long and short chains on poly(lactic acid)
Polylactic acid (PLA), a biodegradable polymer with low flexibility, is commonly plasticized with small molecules like tributyl citrate (TBC) for film production. However, these plasticizers, which lack chemical bonds or strong intermolecular interactions with the matrix, tend to migrate to the film...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-09, Vol.276 (Pt 1), p.133948, Article 133948 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polylactic acid (PLA), a biodegradable polymer with low flexibility, is commonly plasticized with small molecules like tributyl citrate (TBC) for film production. However, these plasticizers, which lack chemical bonds or strong intermolecular interactions with the matrix, tend to migrate to the film surface over time. Their inclusion often compromises material strength for flexibility, increasing elongation at break but reducing tensile strength. In this research, by combining citric acid with n-butanol (B) and poly(ethylene glycol) diglycidyl ether (E), we synthesized three plasticizers, namely TE3, TE2B1, and TE1B2, to enhance the flexibility of PLA. TE2B1 and TE1B2 are equipped with butyl ester groups that offer effective plasticizing effects. Additionally, the incorporation of long-chain alkyl featuring epoxy groups can boost the interaction with PLA. The results showed that the epoxy groups of the long-chain alkyl plasticizers can improve the elongation at break without compromising tensile strength significantly. The migration of plasticizer from PLA matrix can be reduced by strong interactions like chemical bonds, entanglements, and hydrogen bonding with PLA. TE1B2 demonstrated the best plasticizing effect. Adding 15 portions of TE1B2 and TBC separately increased PLA's elongation at break to 304 % and 242 %, with tensile strengths of 36.1 MPa and 22.3 MPa, respectively.
•TE2B1 and TE1B2 are equipped with butyl ester groups that offer effective plasticizing effects.•The incorporation of long-chain alkyl featuring epoxy groups can boost the interaction with PLA.•The epoxy groups in long-chain alkyl plasticizers enhance elongation at break without reducing tensile strength.•The plasticizer migration from PLA could be reduced due to strong interactions. |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.133948 |