Beneficial effects of Dendrobium officinale National Herbal Drink on metabolic immune crosstalk via regulate SCFAs-Th17/Treg

The development of gut-liver axis metabolic immune crosstalk is intimately associated with intestinal barrier disorder, intestinal SCFAs-Th17/Treg immunological imbalance, and disorders of the gut microbiota. Prior research has discovered that Dendrobium officinale National Herbal Drink (NHD), a tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phytomedicine (Stuttgart) 2024-09, Vol.132, p.155816, Article 155816
Hauptverfasser: Dong, Ying-Jie, Zhang, Yi-Piao, Jiang, Xiao-Feng, Xie, Zhi-Yi, Li, Bo, Jiang, Ning-Hua, Chen, Su-Hong, Lv, Gui-Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of gut-liver axis metabolic immune crosstalk is intimately associated with intestinal barrier disorder, intestinal SCFAs-Th17/Treg immunological imbalance, and disorders of the gut microbiota. Prior research has discovered that Dendrobium officinale National Herbal Drink (NHD), a traditional Chinese medicine drink with enhanced immunity, may enhance the immunological response in animals with impaired immune systems brought on by cyclophosphamide by repairing intestinal barrier function and controlling turbulence in the gut microbiota. However, whether NHD can further improve the gut-liver axis metabolic immune crosstalk and its related mechanisms need to be systematically studied. The purpose of this study is to clarify the function and mechanism of NHD in enhancing the gut-liver axis metabolic immunological crosstalk brought on by excessive alcohol intake. In this work, we set up a mouse model to analyze the metabolic and immunological crosstalk involving the gut-liver axis across 7 weeks of continuous, excessive drinking. At the same time, high and low doses (20,10 ml/kg) of NHD were given by gavage. The effect of NHD on improving the metabolism of gut-liver axis was evaluated by blood lipid, liver lipid deposition, liver function and intestinal pathophysiology. By measuring serum immunological indices, intestinal barrier, and intestinal immune barrier, the impact of NHD on enhancing immune and intestinal barrier function was assessed. Furthermore, immunohistochemistry, immunofluorescence, 16S rRNA, Western blot, q-PCR and other methods were used to detect gut microbiota, SCFAs-GPR41/43 pathway, intestinal Th17/Treg immune cells and PPAR-α-NPC1L1/SREBP1 pathway to elucidate the mechanism by which NHD enhances the gut-liver axis' metabolic immune crosstalk. Our study demonstrated that NHD has the potential to improve the pathophysiological damage caused by gut-liver axis in model mice. NHD also ameliorated the disorder of lipid metabolism. In addition, it regulated the levels of peripheral blood T cell immunity and serum immune factors. And NHD can restore intestinal mechanical and immune barrier damage. NHD has a favorable impact on the quantity of beneficial bacteria, including uncultured_bacterium_g__norank_f__muribaculacea and uncultured_bacterium_g__Turicibacter. Additionally, it raised the model mice's levels of SCFAs (n-butyric acid, isovaleric acid, etc.). This resulted in the promotion of intestinal GPR41/43-ERK1/2 expression and
ISSN:0944-7113
1618-095X
1618-095X
DOI:10.1016/j.phymed.2024.155816