Assessing the energy recovery potential at district metered areas inlets of water supply systems: A Spanish case study

The energy required for various processes in the water cycle can have significant economic and environmental impacts. Therefore, efficient energy management in urban water supply systems is crucial for a sustainable operation. By installing energy recovery technologies in these facilities, it is pos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental management 2023-12, Vol.347, p.119229-119229, Article 119229
Hauptverfasser: Fernández-Guillamón, Ana, de la Cruz, Francisco Javier Pérez, Valverde-Pérez, Borja, Martínez-Solano, Pedro D., Vigueras-Rodriguez, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The energy required for various processes in the water cycle can have significant economic and environmental impacts. Therefore, efficient energy management in urban water supply systems is crucial for a sustainable operation. By installing energy recovery technologies in these facilities, it is possible to reap the benefits of the infrastructure design by saving energy. In this study, a new methodology to assess the energy recovery at the inlets of district metered areas is presented, considering the city of Murcia (Spain) as case study. This methodology is based on creating a detailed model of city water supply system and calibrating such model with an experimental campaign of measurements. Then, the assessment of the hydraulic potential recovery is analysed through two different energy estimators, one considering the minimum available net head and the other assuming a variable net head. Results show that there are several points where turbines could be installed, most of them recovering in between 1000–5000 kWh, which could be used to cover the yearly energy consumption of about 24–120 m2 of a school or 10–50 traffic lights of such area. Moreover, in some points it could be recovered up to 14500 kWh. Even though these values are not high, the energy recovered could be used for self-consumption of nearby electrical loads, at the time that reduces the pressure in the system, thus leading to leak reductions. Moreover, this kind of energy recovery does not reduce the potential of other proposals for upstream energy recovery, such as replacing pressure reduction valves with turbines instead. The scripts developed to apply the proposed methodology are available in EPANET-Octave file exchange for the researcher community. •Assessing the energy potential within district metered areas of water supply systems.•The case study uses a real water supply system from the city centre of Murcia, Spain.•The water supply system is modelled through a comprehensive experimental campaign.•Numerous locations showed an energy potential ranging from 1000 to 14500 kWh.
ISSN:0301-4797
1095-8630
DOI:10.1016/j.jenvman.2023.119229