A holistic overview of the in-situ and ex-situ carbon mineralization: Methods, mechanisms, and technical challenges

To mitigate anthropogenic CO2 emissions and address the climate change effects, carbon capture and storage by mineralization (CCSM) and industrial mineral carbonation are gaining attraction. Specifically, in-situ carbon mineralization in the subsurface geological formations occurs due to the transfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-09, Vol.943, p.173836, Article 173836
Hauptverfasser: Kirmani, Farzain Ud Din, Raza, Arshad, Ahmad, Sheraz, Arif, Muhammad, Mahmoud, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To mitigate anthropogenic CO2 emissions and address the climate change effects, carbon capture and storage by mineralization (CCSM) and industrial mineral carbonation are gaining attraction. Specifically, in-situ carbon mineralization in the subsurface geological formations occurs due to the transformation of silicate minerals into carbonates (e.g., CaCO3, MgCO3) while ex-situ carbon mineralization at the surface undergoes chemical reactions with metal cations – thus leading to permanent storage. However, both processes are complex and require a rigorous investigation to enable large-scale mineralization. This paper, therefore, aims to provide an overreaching review of the in-situ and ex-situ methods for carbon mineralization for different rock types, various engineered processes, and associated mechanisms pertinent to mineralization. Furthermore, the factors influencing in-situ and ex-situ processes, e.g., suitable minerals, optimal operating conditions, and technical challenges, have also been inclusively reviewed. Our findings suggest that in-situ carbon mineralization, i.e., subsurface permanent storage of CO2 by mineralization, arguably is more promising than ex-situ mineralization due to energy efficiency and large-scale storage potential. Furthermore, the effect of rock type can be ranked as igneous (basalt) > carbonates (sedimentary) > sandstone (sedimentary) to consider for rapid and large-scale CCSM. The findings of this review will, therefore, help towards a better understanding of carbon mineralization, which contributes towards large-scale CO2 storage to meet the global net-zero targets. [Display omitted] •Promising in-situ mineralization more than ex-situ mineralization•Presented rock type priority: Basalt > Carbonates > Sandstone•Reviewed comprehensive understanding of technical challenges
ISSN:0048-9697
1879-1026
1879-1026
DOI:10.1016/j.scitotenv.2024.173836