A holistic overview of the in-situ and ex-situ carbon mineralization: Methods, mechanisms, and technical challenges
To mitigate anthropogenic CO2 emissions and address the climate change effects, carbon capture and storage by mineralization (CCSM) and industrial mineral carbonation are gaining attraction. Specifically, in-situ carbon mineralization in the subsurface geological formations occurs due to the transfo...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2024-09, Vol.943, p.173836, Article 173836 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To mitigate anthropogenic CO2 emissions and address the climate change effects, carbon capture and storage by mineralization (CCSM) and industrial mineral carbonation are gaining attraction. Specifically, in-situ carbon mineralization in the subsurface geological formations occurs due to the transformation of silicate minerals into carbonates (e.g., CaCO3, MgCO3) while ex-situ carbon mineralization at the surface undergoes chemical reactions with metal cations – thus leading to permanent storage. However, both processes are complex and require a rigorous investigation to enable large-scale mineralization.
This paper, therefore, aims to provide an overreaching review of the in-situ and ex-situ methods for carbon mineralization for different rock types, various engineered processes, and associated mechanisms pertinent to mineralization. Furthermore, the factors influencing in-situ and ex-situ processes, e.g., suitable minerals, optimal operating conditions, and technical challenges, have also been inclusively reviewed. Our findings suggest that in-situ carbon mineralization, i.e., subsurface permanent storage of CO2 by mineralization, arguably is more promising than ex-situ mineralization due to energy efficiency and large-scale storage potential. Furthermore, the effect of rock type can be ranked as igneous (basalt) > carbonates (sedimentary) > sandstone (sedimentary) to consider for rapid and large-scale CCSM. The findings of this review will, therefore, help towards a better understanding of carbon mineralization, which contributes towards large-scale CO2 storage to meet the global net-zero targets.
[Display omitted]
•Promising in-situ mineralization more than ex-situ mineralization•Presented rock type priority: Basalt > Carbonates > Sandstone•Reviewed comprehensive understanding of technical challenges |
---|---|
ISSN: | 0048-9697 1879-1026 1879-1026 |
DOI: | 10.1016/j.scitotenv.2024.173836 |