A review of recent advances of piezoelectric poly-L-lactic acid for biomedical applications
Poly-L-lactic acid (PLLA), recognized as a piezoelectric material, not only demonstrates exceptional piezoelectric properties but also exhibits commendable biocompatibility and biodegradability. These properties render PLLA highly promising for diverse applications, including sensors, wearable devic...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-09, Vol.276 (Pt 1), p.133748, Article 133748 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Poly-L-lactic acid (PLLA), recognized as a piezoelectric material, not only demonstrates exceptional piezoelectric properties but also exhibits commendable biocompatibility and biodegradability. These properties render PLLA highly promising for diverse applications, including sensors, wearable devices, biomedical engineering, and related domains. This review offers a comprehensive overview of the distinctive piezoelectric effect of PLLA-based material and delves into the latest advancements in its preparation strategies as a piezoelectric material. It further presents recent research progress in PLLA-based piezoelectric materials, particularly in the realms of health monitoring, skin repair, nerve regeneration, and tissue repair. The discourse extends to providing insights into potential future trajectories for the development of PLLA-based piezoelectric materials. |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.133748 |