Design Photocatalysts to Boost Carrier Dynamics in Plastics Photoconversion into Fuels
Solar-driven plastics conversion into valuable fuels has attracted broad attention in recent years, which has enormous potential for plastics recycling in the future. However, it usually encounters low conversion efficiency, where one of the reasons is attributed to the poor carrier dynamics in the...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-07, Vol.16 (28), p.35865-35873 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Solar-driven plastics conversion into valuable fuels has attracted broad attention in recent years, which has enormous potential for plastics recycling in the future. However, it usually encounters low conversion efficiency, where one of the reasons is attributed to the poor carrier dynamics in the photocatalytic process. In this Perspective, we critically review the developed strategies, involving defect engineering, doping engineering, heterojunction engineering, and composite construction, for boosted carrier separation efficiency. In addition, we provide an outlook for more potential strategies to engineer catalysts for promoted carrier dynamics. Finally, we also propose prospects for the future research direction of plastics photoconversion into fuels. |
---|---|
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.4c07664 |