Immune and physiological responses of Mytilus unguiculatus to Alexandrium spp. with varying paralytic shellfish toxin profiles
The innate immunity of bivalves serves as the initial defense mechanism against environmental pollutants, ultimately impacting genetic regulatory networks through synergistic interactions. Previous research has demonstrated variations in the accumulation and tolerance capacities of bivalves; however...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2024-07, Vol.935, p.173483-173483, Article 173483 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The innate immunity of bivalves serves as the initial defense mechanism against environmental pollutants, ultimately impacting genetic regulatory networks through synergistic interactions. Previous research has demonstrated variations in the accumulation and tolerance capacities of bivalves; however, the specific mechanism underlying the low accumulation of PSTs in M. unguiculatus remains unclear. This study examined the alterations in feeding behavior and transcriptional regulation of M. unguiculatus following exposure to two Alexandrium strains with distinct toxin profiles, specifically gonyautoxin (AM) and N-sulfocarbamoyl toxin (AC). The total accumulation rate of PSTs in M. unguiculatus was 43.64 % (AC) and 27.80 % (AM), with highest PSTs content in the AM group (455.39 μg STXeq/kg). There were significant variations (P |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2024.173483 |