Impact of treated effluent discharges on fish communities: Evaluating the effects of pollution on fish distribution, abundance and environmental integrity

Domestic effluent discharges change water quality and habitat conditions in urban watersheds, though less known about how these impact fish communities. This work assessed the impact of chronic wastewater pollution on biotic and abiotic factors in six urban streams in Patagonia. Stream hydrological...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-03, Vol.917, p.170237-170237, Article 170237
Hauptverfasser: Di Prinzio, Cecilia Yanina, Andrade-Muñoz, Alan Sebastián, Assef, Yanina Andrea, Dromaz, Walter Mauricio, Quinteros, Pamela, Miserendino, María Laura
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Domestic effluent discharges change water quality and habitat conditions in urban watersheds, though less known about how these impact fish communities. This work assessed the impact of chronic wastewater pollution on biotic and abiotic factors in six urban streams in Patagonia. Stream hydrological features, water quality conditions and fish communities were analyzed during a one-year period. The oxygen saturation and water velocity showed significant differences between up- and downstream locations of wastewater treatment plants (WWTPs). Chemical parameters revealed an eutrophication process downstream of the WWTP input, with increased biological oxygen demanding (BOD), nitrogen, ammonium, soluble reactive phosphorus, and chlorophyll a concentrations, indicating nutrient enrichment that can lead to a potential for algal growth. The study highlighted significant differences in fish abundance, density, and biomass between reaches upstream (Control) and downstream (Impacted) of the WWTP discharges, suggesting a detrimental impact on fish communities. While juveniles, females and males of the native Catfish (Hatcheria macraei) preferred pristine zones, juveniles and males of the native Perch (Percichthys spp.) displayed preferences for areas with higher nutrient levels. Exotic species like Rainbow Trout (Oncorhynchus mykiss) (juveniles, females and males) preferred low-nutrient, high-quality habitats, while juveniles, females and males of Brown Trout (Salmo trutta) were found near the WWTP facilities. Although some previous studies have suggested that nutrient enrichment might benefit fish, our findings highlight the negative impacts on fish abundance and distribution due to WWTPs. Fish species appear to demonstrate certain degrees of tolerance to pollution, with larger individuals displaying greater tolerance. Although the pollution levels may did not result in an irreversible collapse of the system, the absence of fish in the stream with the highest pollution level would indicate an ongoing environmental deterioration. Anthropogenic activities, especially municipal effluent discharge, exacerbate environmental degradation and demand specific management actions to maintain ecosystem integrity. [Display omitted] •Higher BOD, ammonium, phosphorus, and periphyton downstream WWTP•Deterioration of habitat quality was associated with WWTP discharges.•WWTP effluents impacted negatively on fish communities.•Higher fish density, biomass, and abundance in control strea
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2024.170237