Ultrahigh resolution dissolved organic matter characterization reveals distinct permafrost characteristics on the Peel Plateau, Canada

The Arctic is warming at a rate twice that of other global ecosystems and changing climate conditions in the Arctic are mobilizing long frozen permafrost stores of organic carbon. In ice-rich regions, permafrost thaw on sloping terrain can cause land subsidence, and the development of thaw-driven ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biogeochemistry 2024-02, Vol.167 (2), p.99-117
Hauptverfasser: Moore, M. R. N., Tank, S. E., Kurek, M. R., Taskovic, M., McKenna, A. M., Smith, J. L. J., Kokelj, S. V., Spencer, R. G. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Arctic is warming at a rate twice that of other global ecosystems and changing climate conditions in the Arctic are mobilizing long frozen permafrost stores of organic carbon. In ice-rich regions, permafrost thaw on sloping terrain can cause land subsidence, and the development of thaw-driven mass wasting. The Peel Plateau, Northwest Territories, Canada has extensive thaw-driven landslides called retrogressive thaw slumps that are exposing early Holocene age paleo-thaw layers and Pleistocene age glaciogenic material deposited by the Laurentide Ice Sheet. This study aimed to see if unique retrogressive thaw slump derived permafrost inputs could be readily observed in streams across six diverse thermokarst features via optical and ultrahigh-resolution mass spectrometry. Aquatic samples from water draining thermokarst slump features, and downstream of thermokarst inputs exhibited higher dissolved organic carbon concentrations and lower aromaticity as evidenced by optical parameters (e.g. declining SUVA 254 , increasing S 275-295 ) and FT-ICR MS metrics (e.g. lower AI mod and nominal oxidation state of carbon) versus upstream of thermokarst impacts. Increases in the relative abundances of assigned heteroatomic molecular formulae (e.g. CHON, CHOS, CHONS) were also greater within and downstream of thermokarst features. The unique molecular formulae present in permafrost thermokarst inputs were determined ( n  = 1844) and subsequently tracked downstream. These permafrost marker formulae were enriched in aliphatics and H/C, as well as heteroatoms and exhibited low aromaticity. A portion of the unique molecular fingerprint persisted downstream, highlighting the potential to not only assess thermokarst inputs but also to follow these inputs and their fate downstream throughout the aquatic network.
ISSN:1573-515X
0168-2563
1573-515X
DOI:10.1007/s10533-023-01101-3